|
import os
|
|
|
|
from .log import log_node_warn, log_node_info, log_node_success
|
|
|
|
from .constants import get_category, get_name
|
|
from .power_prompt_utils import get_and_strip_loras
|
|
from nodes import LoraLoader, CLIPTextEncode
|
|
import folder_paths
|
|
|
|
NODE_NAME = get_name('Power Prompt')
|
|
|
|
|
|
class RgthreePowerPrompt:
|
|
|
|
NAME = NODE_NAME
|
|
CATEGORY = get_category()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
SAVED_PROMPTS_FILES = folder_paths.get_filename_list('saved_prompts')
|
|
SAVED_PROMPTS_CONTENT = []
|
|
for filename in SAVED_PROMPTS_FILES:
|
|
with open(folder_paths.get_full_path('saved_prompts', filename), 'r') as f:
|
|
SAVED_PROMPTS_CONTENT.append(f.read())
|
|
return {
|
|
'required': {
|
|
'prompt': ('STRING', {
|
|
'multiline': True
|
|
}),
|
|
},
|
|
'optional': {
|
|
"opt_model": ("MODEL",),
|
|
"opt_clip": ("CLIP",),
|
|
'insert_lora': (['CHOOSE', 'DISABLE LORAS'] +
|
|
[os.path.splitext(x)[0] for x in folder_paths.get_filename_list('loras')],),
|
|
'insert_embedding': ([
|
|
'CHOOSE',
|
|
] + [os.path.splitext(x)[0] for x in folder_paths.get_filename_list('embeddings')],),
|
|
'insert_saved': ([
|
|
'CHOOSE',
|
|
] + SAVED_PROMPTS_FILES,),
|
|
},
|
|
'hidden': {
|
|
'values_insert_saved': (['CHOOSE'] + SAVED_PROMPTS_CONTENT,),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = (
|
|
'CONDITIONING',
|
|
'MODEL',
|
|
'CLIP',
|
|
'STRING',
|
|
)
|
|
RETURN_NAMES = (
|
|
'CONDITIONING',
|
|
'MODEL',
|
|
'CLIP',
|
|
'TEXT',
|
|
)
|
|
FUNCTION = 'main'
|
|
|
|
def main(self,
|
|
prompt,
|
|
opt_model=None,
|
|
opt_clip=None,
|
|
insert_lora=None,
|
|
insert_embedding=None,
|
|
insert_saved=None,
|
|
values_insert_saved=None):
|
|
if insert_lora == 'DISABLE LORAS':
|
|
prompt, loras, skipped, unfound = get_and_strip_loras(prompt, log_node=NODE_NAME, silent=True)
|
|
log_node_info(
|
|
NODE_NAME,
|
|
f'Disabling all found loras ({len(loras)}) and stripping lora tags for TEXT output.')
|
|
elif opt_model is not None and opt_clip is not None:
|
|
prompt, loras, skipped, unfound = get_and_strip_loras(prompt, log_node=NODE_NAME)
|
|
if len(loras) > 0:
|
|
for lora in loras:
|
|
opt_model, opt_clip = LoraLoader().load_lora(opt_model, opt_clip, lora['lora'],
|
|
lora['strength'], lora['strength'])
|
|
log_node_success(NODE_NAME, f'Loaded "{lora["lora"]}" from prompt')
|
|
log_node_info(NODE_NAME, f'{len(loras)} Loras processed; stripping tags for TEXT output.')
|
|
elif '<lora:' in prompt:
|
|
prompt, loras, skipped, unfound = get_and_strip_loras(prompt, log_node=NODE_NAME, silent=True)
|
|
total_loras = len(loras) + len(skipped) + len(unfound)
|
|
if total_loras:
|
|
log_node_warn(
|
|
NODE_NAME, f'Found {len(loras)} lora tags in prompt but model & clip were not supplied!')
|
|
log_node_info(NODE_NAME, 'Loras not processed, keeping for TEXT output.')
|
|
|
|
conditioning = None
|
|
if opt_clip is not None:
|
|
conditioning = CLIPTextEncode().encode(opt_clip, prompt)[0]
|
|
|
|
return (conditioning, opt_model, opt_clip, prompt)
|
|
|