|
|
|
import numpy as np |
|
import torch |
|
|
|
def loglinear_interp(t_steps, num_steps): |
|
""" |
|
Performs log-linear interpolation of a given array of decreasing numbers. |
|
""" |
|
xs = np.linspace(0, 1, len(t_steps)) |
|
ys = np.log(t_steps[::-1]) |
|
|
|
new_xs = np.linspace(0, 1, num_steps) |
|
new_ys = np.interp(new_xs, xs, ys) |
|
|
|
interped_ys = np.exp(new_ys)[::-1].copy() |
|
return interped_ys |
|
|
|
NOISE_LEVELS = {"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.6946151520, 1.8841921177, 1.3943805092, 0.9642583904, 0.6523686016, 0.3977456272, 0.1515232662, 0.0291671582], |
|
"SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582], |
|
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]} |
|
|
|
class AlignYourStepsScheduler: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"model_type": (["SD1", "SDXL", "SVD"], ), |
|
"steps": ("INT", {"default": 10, "min": 10, "max": 10000}), |
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
} |
|
} |
|
RETURN_TYPES = ("SIGMAS",) |
|
CATEGORY = "sampling/custom_sampling/schedulers" |
|
|
|
FUNCTION = "get_sigmas" |
|
|
|
def get_sigmas(self, model_type, steps, denoise): |
|
total_steps = steps |
|
if denoise < 1.0: |
|
if denoise <= 0.0: |
|
return (torch.FloatTensor([]),) |
|
total_steps = round(steps * denoise) |
|
|
|
sigmas = NOISE_LEVELS[model_type][:] |
|
if (steps + 1) != len(sigmas): |
|
sigmas = loglinear_interp(sigmas, steps + 1) |
|
|
|
sigmas = sigmas[-(total_steps + 1):] |
|
sigmas[-1] = 0 |
|
return (torch.FloatTensor(sigmas), ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"AlignYourStepsScheduler": AlignYourStepsScheduler, |
|
} |
|
|