|
import comfy.utils |
|
import comfy_extras.nodes_post_processing |
|
import torch |
|
|
|
def reshape_latent_to(target_shape, latent): |
|
if latent.shape[1:] != target_shape[1:]: |
|
latent = comfy.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center") |
|
return comfy.utils.repeat_to_batch_size(latent, target_shape[0]) |
|
|
|
|
|
class LatentAdd: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "op" |
|
|
|
CATEGORY = "latent/advanced" |
|
|
|
def op(self, samples1, samples2): |
|
samples_out = samples1.copy() |
|
|
|
s1 = samples1["samples"] |
|
s2 = samples2["samples"] |
|
|
|
s2 = reshape_latent_to(s1.shape, s2) |
|
samples_out["samples"] = s1 + s2 |
|
return (samples_out,) |
|
|
|
class LatentSubtract: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "op" |
|
|
|
CATEGORY = "latent/advanced" |
|
|
|
def op(self, samples1, samples2): |
|
samples_out = samples1.copy() |
|
|
|
s1 = samples1["samples"] |
|
s2 = samples2["samples"] |
|
|
|
s2 = reshape_latent_to(s1.shape, s2) |
|
samples_out["samples"] = s1 - s2 |
|
return (samples_out,) |
|
|
|
class LatentMultiply: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT",), |
|
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "op" |
|
|
|
CATEGORY = "latent/advanced" |
|
|
|
def op(self, samples, multiplier): |
|
samples_out = samples.copy() |
|
|
|
s1 = samples["samples"] |
|
samples_out["samples"] = s1 * multiplier |
|
return (samples_out,) |
|
|
|
class LatentInterpolate: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples1": ("LATENT",), |
|
"samples2": ("LATENT",), |
|
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "op" |
|
|
|
CATEGORY = "latent/advanced" |
|
|
|
def op(self, samples1, samples2, ratio): |
|
samples_out = samples1.copy() |
|
|
|
s1 = samples1["samples"] |
|
s2 = samples2["samples"] |
|
|
|
s2 = reshape_latent_to(s1.shape, s2) |
|
|
|
m1 = torch.linalg.vector_norm(s1, dim=(1)) |
|
m2 = torch.linalg.vector_norm(s2, dim=(1)) |
|
|
|
s1 = torch.nan_to_num(s1 / m1) |
|
s2 = torch.nan_to_num(s2 / m2) |
|
|
|
t = (s1 * ratio + s2 * (1.0 - ratio)) |
|
mt = torch.linalg.vector_norm(t, dim=(1)) |
|
st = torch.nan_to_num(t / mt) |
|
|
|
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio)) |
|
return (samples_out,) |
|
|
|
class LatentBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "batch" |
|
|
|
CATEGORY = "latent/batch" |
|
|
|
def batch(self, samples1, samples2): |
|
samples_out = samples1.copy() |
|
s1 = samples1["samples"] |
|
s2 = samples2["samples"] |
|
|
|
if s1.shape[1:] != s2.shape[1:]: |
|
s2 = comfy.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center") |
|
s = torch.cat((s1, s2), dim=0) |
|
samples_out["samples"] = s |
|
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])]) |
|
return (samples_out,) |
|
|
|
class LatentBatchSeedBehavior: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT",), |
|
"seed_behavior": (["random", "fixed"],{"default": "fixed"}),}} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "op" |
|
|
|
CATEGORY = "latent/advanced" |
|
|
|
def op(self, samples, seed_behavior): |
|
samples_out = samples.copy() |
|
latent = samples["samples"] |
|
if seed_behavior == "random": |
|
if 'batch_index' in samples_out: |
|
samples_out.pop('batch_index') |
|
elif seed_behavior == "fixed": |
|
batch_number = samples_out.get("batch_index", [0])[0] |
|
samples_out["batch_index"] = [batch_number] * latent.shape[0] |
|
|
|
return (samples_out,) |
|
|
|
class LatentApplyOperation: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT",), |
|
"operation": ("LATENT_OPERATION",), |
|
}} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "op" |
|
|
|
CATEGORY = "latent/advanced/operations" |
|
EXPERIMENTAL = True |
|
|
|
def op(self, samples, operation): |
|
samples_out = samples.copy() |
|
|
|
s1 = samples["samples"] |
|
samples_out["samples"] = operation(latent=s1) |
|
return (samples_out,) |
|
|
|
class LatentApplyOperationCFG: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"operation": ("LATENT_OPERATION",), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "latent/advanced/operations" |
|
EXPERIMENTAL = True |
|
|
|
def patch(self, model, operation): |
|
m = model.clone() |
|
|
|
def pre_cfg_function(args): |
|
conds_out = args["conds_out"] |
|
if len(conds_out) == 2: |
|
conds_out[0] = operation(latent=(conds_out[0] - conds_out[1])) + conds_out[1] |
|
else: |
|
conds_out[0] = operation(latent=conds_out[0]) |
|
return conds_out |
|
|
|
m.set_model_sampler_pre_cfg_function(pre_cfg_function) |
|
return (m, ) |
|
|
|
class LatentOperationTonemapReinhard: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), |
|
}} |
|
|
|
RETURN_TYPES = ("LATENT_OPERATION",) |
|
FUNCTION = "op" |
|
|
|
CATEGORY = "latent/advanced/operations" |
|
EXPERIMENTAL = True |
|
|
|
def op(self, multiplier): |
|
def tonemap_reinhard(latent, **kwargs): |
|
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None] |
|
normalized_latent = latent / latent_vector_magnitude |
|
|
|
mean = torch.mean(latent_vector_magnitude, dim=(1,2,3), keepdim=True) |
|
std = torch.std(latent_vector_magnitude, dim=(1,2,3), keepdim=True) |
|
|
|
top = (std * 5 + mean) * multiplier |
|
|
|
|
|
latent_vector_magnitude *= (1.0 / top) |
|
new_magnitude = latent_vector_magnitude / (latent_vector_magnitude + 1.0) |
|
new_magnitude *= top |
|
|
|
return normalized_latent * new_magnitude |
|
return (tonemap_reinhard,) |
|
|
|
class LatentOperationSharpen: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"sharpen_radius": ("INT", { |
|
"default": 9, |
|
"min": 1, |
|
"max": 31, |
|
"step": 1 |
|
}), |
|
"sigma": ("FLOAT", { |
|
"default": 1.0, |
|
"min": 0.1, |
|
"max": 10.0, |
|
"step": 0.1 |
|
}), |
|
"alpha": ("FLOAT", { |
|
"default": 0.1, |
|
"min": 0.0, |
|
"max": 5.0, |
|
"step": 0.01 |
|
}), |
|
}} |
|
|
|
RETURN_TYPES = ("LATENT_OPERATION",) |
|
FUNCTION = "op" |
|
|
|
CATEGORY = "latent/advanced/operations" |
|
EXPERIMENTAL = True |
|
|
|
def op(self, sharpen_radius, sigma, alpha): |
|
def sharpen(latent, **kwargs): |
|
luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None] |
|
normalized_latent = latent / luminance |
|
channels = latent.shape[1] |
|
|
|
kernel_size = sharpen_radius * 2 + 1 |
|
kernel = comfy_extras.nodes_post_processing.gaussian_kernel(kernel_size, sigma, device=luminance.device) |
|
center = kernel_size // 2 |
|
|
|
kernel *= alpha * -10 |
|
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0 |
|
|
|
padded_image = torch.nn.functional.pad(normalized_latent, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect') |
|
sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius] |
|
|
|
return luminance * sharpened |
|
return (sharpen,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"LatentAdd": LatentAdd, |
|
"LatentSubtract": LatentSubtract, |
|
"LatentMultiply": LatentMultiply, |
|
"LatentInterpolate": LatentInterpolate, |
|
"LatentBatch": LatentBatch, |
|
"LatentBatchSeedBehavior": LatentBatchSeedBehavior, |
|
"LatentApplyOperation": LatentApplyOperation, |
|
"LatentApplyOperationCFG": LatentApplyOperationCFG, |
|
"LatentOperationTonemapReinhard": LatentOperationTonemapReinhard, |
|
"LatentOperationSharpen": LatentOperationSharpen, |
|
} |
|
|