|
import torch |
|
import comfy.model_management |
|
import comfy.utils |
|
import folder_paths |
|
import os |
|
import logging |
|
from enum import Enum |
|
|
|
CLAMP_QUANTILE = 0.99 |
|
|
|
def extract_lora(diff, rank): |
|
conv2d = (len(diff.shape) == 4) |
|
kernel_size = None if not conv2d else diff.size()[2:4] |
|
conv2d_3x3 = conv2d and kernel_size != (1, 1) |
|
out_dim, in_dim = diff.size()[0:2] |
|
rank = min(rank, in_dim, out_dim) |
|
|
|
if conv2d: |
|
if conv2d_3x3: |
|
diff = diff.flatten(start_dim=1) |
|
else: |
|
diff = diff.squeeze() |
|
|
|
|
|
U, S, Vh = torch.linalg.svd(diff.float()) |
|
U = U[:, :rank] |
|
S = S[:rank] |
|
U = U @ torch.diag(S) |
|
Vh = Vh[:rank, :] |
|
|
|
dist = torch.cat([U.flatten(), Vh.flatten()]) |
|
hi_val = torch.quantile(dist, CLAMP_QUANTILE) |
|
low_val = -hi_val |
|
|
|
U = U.clamp(low_val, hi_val) |
|
Vh = Vh.clamp(low_val, hi_val) |
|
if conv2d: |
|
U = U.reshape(out_dim, rank, 1, 1) |
|
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1]) |
|
return (U, Vh) |
|
|
|
class LORAType(Enum): |
|
STANDARD = 0 |
|
FULL_DIFF = 1 |
|
|
|
LORA_TYPES = {"standard": LORAType.STANDARD, |
|
"full_diff": LORAType.FULL_DIFF} |
|
|
|
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, bias_diff=False): |
|
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True) |
|
sd = model_diff.model_state_dict(filter_prefix=prefix_model) |
|
|
|
for k in sd: |
|
if k.endswith(".weight"): |
|
weight_diff = sd[k] |
|
if lora_type == LORAType.STANDARD: |
|
if weight_diff.ndim < 2: |
|
if bias_diff: |
|
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu() |
|
continue |
|
try: |
|
out = extract_lora(weight_diff, rank) |
|
output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().half().cpu() |
|
output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().half().cpu() |
|
except: |
|
logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k)) |
|
elif lora_type == LORAType.FULL_DIFF: |
|
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu() |
|
|
|
elif bias_diff and k.endswith(".bias"): |
|
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu() |
|
return output_sd |
|
|
|
class LoraSave: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}), |
|
"rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1}), |
|
"lora_type": (tuple(LORA_TYPES.keys()),), |
|
"bias_diff": ("BOOLEAN", {"default": True}), |
|
}, |
|
"optional": {"model_diff": ("MODEL", {"tooltip": "The ModelSubtract output to be converted to a lora."}), |
|
"text_encoder_diff": ("CLIP", {"tooltip": "The CLIPSubtract output to be converted to a lora."})}, |
|
} |
|
RETURN_TYPES = () |
|
FUNCTION = "save" |
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "_for_testing" |
|
|
|
def save(self, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None): |
|
if model_diff is None and text_encoder_diff is None: |
|
return {} |
|
|
|
lora_type = LORA_TYPES.get(lora_type) |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) |
|
|
|
output_sd = {} |
|
if model_diff is not None: |
|
output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, bias_diff=bias_diff) |
|
if text_encoder_diff is not None: |
|
output_sd = calc_lora_model(text_encoder_diff.patcher, rank, "", "text_encoders.", output_sd, lora_type, bias_diff=bias_diff) |
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors" |
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint) |
|
|
|
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None) |
|
return {} |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"LoraSave": LoraSave |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"LoraSave": "Extract and Save Lora" |
|
} |
|
|