|
import nodes |
|
import node_helpers |
|
import torch |
|
import comfy.model_management |
|
import comfy.model_sampling |
|
import math |
|
|
|
class EmptyLTXVLatentVideo: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), |
|
"length": ("INT", {"default": 97, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "generate" |
|
|
|
CATEGORY = "latent/video/ltxv" |
|
|
|
def generate(self, width, height, length, batch_size=1): |
|
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) |
|
return ({"samples": latent}, ) |
|
|
|
|
|
class LTXVImgToVideo: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"vae": ("VAE",), |
|
"image": ("IMAGE",), |
|
"width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), |
|
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} |
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") |
|
RETURN_NAMES = ("positive", "negative", "latent") |
|
|
|
CATEGORY = "conditioning/video_models" |
|
FUNCTION = "generate" |
|
|
|
def generate(self, positive, negative, image, vae, width, height, length, batch_size): |
|
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) |
|
encode_pixels = pixels[:, :, :, :3] |
|
t = vae.encode(encode_pixels) |
|
positive = node_helpers.conditioning_set_values(positive, {"guiding_latent": t}) |
|
negative = node_helpers.conditioning_set_values(negative, {"guiding_latent": t}) |
|
|
|
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) |
|
latent[:, :, :t.shape[2]] = t |
|
return (positive, negative, {"samples": latent}, ) |
|
|
|
|
|
class LTXVConditioning: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"frame_rate": ("FLOAT", {"default": 25.0, "min": 0.0, "max": 1000.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING") |
|
RETURN_NAMES = ("positive", "negative") |
|
FUNCTION = "append" |
|
|
|
CATEGORY = "conditioning/video_models" |
|
|
|
def append(self, positive, negative, frame_rate): |
|
positive = node_helpers.conditioning_set_values(positive, {"frame_rate": frame_rate}) |
|
negative = node_helpers.conditioning_set_values(negative, {"frame_rate": frame_rate}) |
|
return (positive, negative) |
|
|
|
|
|
class ModelSamplingLTXV: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}), |
|
"base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}), |
|
}, |
|
"optional": {"latent": ("LATENT",), } |
|
} |
|
|
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "advanced/model" |
|
|
|
def patch(self, model, max_shift, base_shift, latent=None): |
|
m = model.clone() |
|
|
|
if latent is None: |
|
tokens = 4096 |
|
else: |
|
tokens = math.prod(latent["samples"].shape[2:]) |
|
|
|
x1 = 1024 |
|
x2 = 4096 |
|
mm = (max_shift - base_shift) / (x2 - x1) |
|
b = base_shift - mm * x1 |
|
shift = (tokens) * mm + b |
|
|
|
sampling_base = comfy.model_sampling.ModelSamplingFlux |
|
sampling_type = comfy.model_sampling.CONST |
|
|
|
class ModelSamplingAdvanced(sampling_base, sampling_type): |
|
pass |
|
|
|
model_sampling = ModelSamplingAdvanced(model.model.model_config) |
|
model_sampling.set_parameters(shift=shift) |
|
m.add_object_patch("model_sampling", model_sampling) |
|
return (m, ) |
|
|
|
|
|
class LTXVScheduler: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), |
|
"max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}), |
|
"base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}), |
|
"stretch": ("BOOLEAN", { |
|
"default": True, |
|
"tooltip": "Stretch the sigmas to be in the range [terminal, 1]." |
|
}), |
|
"terminal": ( |
|
"FLOAT", |
|
{ |
|
"default": 0.1, "min": 0.0, "max": 0.99, "step": 0.01, |
|
"tooltip": "The terminal value of the sigmas after stretching." |
|
}, |
|
), |
|
}, |
|
"optional": {"latent": ("LATENT",), } |
|
} |
|
|
|
RETURN_TYPES = ("SIGMAS",) |
|
CATEGORY = "sampling/custom_sampling/schedulers" |
|
|
|
FUNCTION = "get_sigmas" |
|
|
|
def get_sigmas(self, steps, max_shift, base_shift, stretch, terminal, latent=None): |
|
if latent is None: |
|
tokens = 4096 |
|
else: |
|
tokens = math.prod(latent["samples"].shape[2:]) |
|
|
|
sigmas = torch.linspace(1.0, 0.0, steps + 1) |
|
|
|
x1 = 1024 |
|
x2 = 4096 |
|
mm = (max_shift - base_shift) / (x2 - x1) |
|
b = base_shift - mm * x1 |
|
sigma_shift = (tokens) * mm + b |
|
|
|
power = 1 |
|
sigmas = torch.where( |
|
sigmas != 0, |
|
math.exp(sigma_shift) / (math.exp(sigma_shift) + (1 / sigmas - 1) ** power), |
|
0, |
|
) |
|
|
|
|
|
if stretch: |
|
non_zero_mask = sigmas != 0 |
|
non_zero_sigmas = sigmas[non_zero_mask] |
|
one_minus_z = 1.0 - non_zero_sigmas |
|
scale_factor = one_minus_z[-1] / (1.0 - terminal) |
|
stretched = 1.0 - (one_minus_z / scale_factor) |
|
sigmas[non_zero_mask] = stretched |
|
|
|
return (sigmas,) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"EmptyLTXVLatentVideo": EmptyLTXVLatentVideo, |
|
"LTXVImgToVideo": LTXVImgToVideo, |
|
"ModelSamplingLTXV": ModelSamplingLTXV, |
|
"LTXVConditioning": LTXVConditioning, |
|
"LTXVScheduler": LTXVScheduler, |
|
} |
|
|