|
import comfy.sd |
|
import comfy.utils |
|
import comfy.model_base |
|
import comfy.model_management |
|
import comfy.model_sampling |
|
|
|
import torch |
|
import folder_paths |
|
import json |
|
import os |
|
|
|
from comfy.cli_args import args |
|
|
|
class ModelMergeSimple: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model1": ("MODEL",), |
|
"model2": ("MODEL",), |
|
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "merge" |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def merge(self, model1, model2, ratio): |
|
m = model1.clone() |
|
kp = model2.get_key_patches("diffusion_model.") |
|
for k in kp: |
|
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio) |
|
return (m, ) |
|
|
|
class ModelSubtract: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model1": ("MODEL",), |
|
"model2": ("MODEL",), |
|
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "merge" |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def merge(self, model1, model2, multiplier): |
|
m = model1.clone() |
|
kp = model2.get_key_patches("diffusion_model.") |
|
for k in kp: |
|
m.add_patches({k: kp[k]}, - multiplier, multiplier) |
|
return (m, ) |
|
|
|
class ModelAdd: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model1": ("MODEL",), |
|
"model2": ("MODEL",), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "merge" |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def merge(self, model1, model2): |
|
m = model1.clone() |
|
kp = model2.get_key_patches("diffusion_model.") |
|
for k in kp: |
|
m.add_patches({k: kp[k]}, 1.0, 1.0) |
|
return (m, ) |
|
|
|
|
|
class CLIPMergeSimple: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "clip1": ("CLIP",), |
|
"clip2": ("CLIP",), |
|
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("CLIP",) |
|
FUNCTION = "merge" |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def merge(self, clip1, clip2, ratio): |
|
m = clip1.clone() |
|
kp = clip2.get_key_patches() |
|
for k in kp: |
|
if k.endswith(".position_ids") or k.endswith(".logit_scale"): |
|
continue |
|
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio) |
|
return (m, ) |
|
|
|
|
|
class CLIPSubtract: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "clip1": ("CLIP",), |
|
"clip2": ("CLIP",), |
|
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("CLIP",) |
|
FUNCTION = "merge" |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def merge(self, clip1, clip2, multiplier): |
|
m = clip1.clone() |
|
kp = clip2.get_key_patches() |
|
for k in kp: |
|
if k.endswith(".position_ids") or k.endswith(".logit_scale"): |
|
continue |
|
m.add_patches({k: kp[k]}, - multiplier, multiplier) |
|
return (m, ) |
|
|
|
|
|
class CLIPAdd: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "clip1": ("CLIP",), |
|
"clip2": ("CLIP",), |
|
}} |
|
RETURN_TYPES = ("CLIP",) |
|
FUNCTION = "merge" |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def merge(self, clip1, clip2): |
|
m = clip1.clone() |
|
kp = clip2.get_key_patches() |
|
for k in kp: |
|
if k.endswith(".position_ids") or k.endswith(".logit_scale"): |
|
continue |
|
m.add_patches({k: kp[k]}, 1.0, 1.0) |
|
return (m, ) |
|
|
|
|
|
class ModelMergeBlocks: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model1": ("MODEL",), |
|
"model2": ("MODEL",), |
|
"input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}) |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "merge" |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def merge(self, model1, model2, **kwargs): |
|
m = model1.clone() |
|
kp = model2.get_key_patches("diffusion_model.") |
|
default_ratio = next(iter(kwargs.values())) |
|
|
|
for k in kp: |
|
ratio = default_ratio |
|
k_unet = k[len("diffusion_model."):] |
|
|
|
last_arg_size = 0 |
|
for arg in kwargs: |
|
if k_unet.startswith(arg) and last_arg_size < len(arg): |
|
ratio = kwargs[arg] |
|
last_arg_size = len(arg) |
|
|
|
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio) |
|
return (m, ) |
|
|
|
def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None): |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir) |
|
prompt_info = "" |
|
if prompt is not None: |
|
prompt_info = json.dumps(prompt) |
|
|
|
metadata = {} |
|
|
|
enable_modelspec = True |
|
if isinstance(model.model, comfy.model_base.SDXL): |
|
if isinstance(model.model, comfy.model_base.SDXL_instructpix2pix): |
|
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-edit" |
|
else: |
|
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base" |
|
elif isinstance(model.model, comfy.model_base.SDXLRefiner): |
|
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner" |
|
elif isinstance(model.model, comfy.model_base.SVD_img2vid): |
|
metadata["modelspec.architecture"] = "stable-video-diffusion-img2vid-v1" |
|
elif isinstance(model.model, comfy.model_base.SD3): |
|
metadata["modelspec.architecture"] = "stable-diffusion-v3-medium" |
|
else: |
|
enable_modelspec = False |
|
|
|
if enable_modelspec: |
|
metadata["modelspec.sai_model_spec"] = "1.0.0" |
|
metadata["modelspec.implementation"] = "sgm" |
|
metadata["modelspec.title"] = "{} {}".format(filename, counter) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extra_keys = {} |
|
model_sampling = model.get_model_object("model_sampling") |
|
if isinstance(model_sampling, comfy.model_sampling.ModelSamplingContinuousEDM): |
|
if isinstance(model_sampling, comfy.model_sampling.V_PREDICTION): |
|
extra_keys["edm_vpred.sigma_max"] = torch.tensor(model_sampling.sigma_max).float() |
|
extra_keys["edm_vpred.sigma_min"] = torch.tensor(model_sampling.sigma_min).float() |
|
|
|
if model.model.model_type == comfy.model_base.ModelType.EPS: |
|
metadata["modelspec.predict_key"] = "epsilon" |
|
elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION: |
|
metadata["modelspec.predict_key"] = "v" |
|
|
|
if not args.disable_metadata: |
|
metadata["prompt"] = prompt_info |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata[x] = json.dumps(extra_pnginfo[x]) |
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors" |
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint) |
|
|
|
comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata, extra_keys=extra_keys) |
|
|
|
class CheckpointSave: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"clip": ("CLIP",), |
|
"vae": ("VAE",), |
|
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} |
|
RETURN_TYPES = () |
|
FUNCTION = "save" |
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None): |
|
save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo) |
|
return {} |
|
|
|
class CLIPSave: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "clip": ("CLIP",), |
|
"filename_prefix": ("STRING", {"default": "clip/ComfyUI"}),}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} |
|
RETURN_TYPES = () |
|
FUNCTION = "save" |
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None): |
|
prompt_info = "" |
|
if prompt is not None: |
|
prompt_info = json.dumps(prompt) |
|
|
|
metadata = {} |
|
if not args.disable_metadata: |
|
metadata["format"] = "pt" |
|
metadata["prompt"] = prompt_info |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata[x] = json.dumps(extra_pnginfo[x]) |
|
|
|
comfy.model_management.load_models_gpu([clip.load_model()], force_patch_weights=True) |
|
clip_sd = clip.get_sd() |
|
|
|
for prefix in ["clip_l.", "clip_g.", ""]: |
|
k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys())) |
|
current_clip_sd = {} |
|
for x in k: |
|
current_clip_sd[x] = clip_sd.pop(x) |
|
if len(current_clip_sd) == 0: |
|
continue |
|
|
|
p = prefix[:-1] |
|
replace_prefix = {} |
|
filename_prefix_ = filename_prefix |
|
if len(p) > 0: |
|
filename_prefix_ = "{}_{}".format(filename_prefix_, p) |
|
replace_prefix[prefix] = "" |
|
replace_prefix["transformer."] = "" |
|
|
|
full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, self.output_dir) |
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors" |
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint) |
|
|
|
current_clip_sd = comfy.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix) |
|
|
|
comfy.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata) |
|
return {} |
|
|
|
class VAESave: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "vae": ("VAE",), |
|
"filename_prefix": ("STRING", {"default": "vae/ComfyUI_vae"}),}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} |
|
RETURN_TYPES = () |
|
FUNCTION = "save" |
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None): |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) |
|
prompt_info = "" |
|
if prompt is not None: |
|
prompt_info = json.dumps(prompt) |
|
|
|
metadata = {} |
|
if not args.disable_metadata: |
|
metadata["prompt"] = prompt_info |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata[x] = json.dumps(extra_pnginfo[x]) |
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors" |
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint) |
|
|
|
comfy.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata) |
|
return {} |
|
|
|
class ModelSave: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"filename_prefix": ("STRING", {"default": "diffusion_models/ComfyUI"}),}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} |
|
RETURN_TYPES = () |
|
FUNCTION = "save" |
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "advanced/model_merging" |
|
|
|
def save(self, model, filename_prefix, prompt=None, extra_pnginfo=None): |
|
save_checkpoint(model, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo) |
|
return {} |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"ModelMergeSimple": ModelMergeSimple, |
|
"ModelMergeBlocks": ModelMergeBlocks, |
|
"ModelMergeSubtract": ModelSubtract, |
|
"ModelMergeAdd": ModelAdd, |
|
"CheckpointSave": CheckpointSave, |
|
"CLIPMergeSimple": CLIPMergeSimple, |
|
"CLIPMergeSubtract": CLIPSubtract, |
|
"CLIPMergeAdd": CLIPAdd, |
|
"CLIPSave": CLIPSave, |
|
"VAESave": VAESave, |
|
"ModelSave": ModelSave, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"CheckpointSave": "Save Checkpoint", |
|
} |
|
|