|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
import math |
|
|
|
import comfy.utils |
|
import comfy.model_management |
|
|
|
|
|
class Blend: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image1": ("IMAGE",), |
|
"image2": ("IMAGE",), |
|
"blend_factor": ("FLOAT", { |
|
"default": 0.5, |
|
"min": 0.0, |
|
"max": 1.0, |
|
"step": 0.01 |
|
}), |
|
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "blend_images" |
|
|
|
CATEGORY = "image/postprocessing" |
|
|
|
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str): |
|
image2 = image2.to(image1.device) |
|
if image1.shape != image2.shape: |
|
image2 = image2.permute(0, 3, 1, 2) |
|
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center') |
|
image2 = image2.permute(0, 2, 3, 1) |
|
|
|
blended_image = self.blend_mode(image1, image2, blend_mode) |
|
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor |
|
blended_image = torch.clamp(blended_image, 0, 1) |
|
return (blended_image,) |
|
|
|
def blend_mode(self, img1, img2, mode): |
|
if mode == "normal": |
|
return img2 |
|
elif mode == "multiply": |
|
return img1 * img2 |
|
elif mode == "screen": |
|
return 1 - (1 - img1) * (1 - img2) |
|
elif mode == "overlay": |
|
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2)) |
|
elif mode == "soft_light": |
|
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1)) |
|
elif mode == "difference": |
|
return img1 - img2 |
|
else: |
|
raise ValueError(f"Unsupported blend mode: {mode}") |
|
|
|
def g(self, x): |
|
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x)) |
|
|
|
def gaussian_kernel(kernel_size: int, sigma: float, device=None): |
|
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij") |
|
d = torch.sqrt(x * x + y * y) |
|
g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) |
|
return g / g.sum() |
|
|
|
class Blur: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"blur_radius": ("INT", { |
|
"default": 1, |
|
"min": 1, |
|
"max": 31, |
|
"step": 1 |
|
}), |
|
"sigma": ("FLOAT", { |
|
"default": 1.0, |
|
"min": 0.1, |
|
"max": 10.0, |
|
"step": 0.1 |
|
}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "blur" |
|
|
|
CATEGORY = "image/postprocessing" |
|
|
|
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float): |
|
if blur_radius == 0: |
|
return (image,) |
|
|
|
image = image.to(comfy.model_management.get_torch_device()) |
|
batch_size, height, width, channels = image.shape |
|
|
|
kernel_size = blur_radius * 2 + 1 |
|
kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1) |
|
|
|
image = image.permute(0, 3, 1, 2) |
|
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect') |
|
blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius] |
|
blurred = blurred.permute(0, 2, 3, 1) |
|
|
|
return (blurred.to(comfy.model_management.intermediate_device()),) |
|
|
|
class Quantize: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"colors": ("INT", { |
|
"default": 256, |
|
"min": 1, |
|
"max": 256, |
|
"step": 1 |
|
}), |
|
"dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "quantize" |
|
|
|
CATEGORY = "image/postprocessing" |
|
|
|
def bayer(im, pal_im, order): |
|
def normalized_bayer_matrix(n): |
|
if n == 0: |
|
return np.zeros((1,1), "float32") |
|
else: |
|
q = 4 ** n |
|
m = q * normalized_bayer_matrix(n - 1) |
|
return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q |
|
|
|
num_colors = len(pal_im.getpalette()) // 3 |
|
spread = 2 * 256 / num_colors |
|
bayer_n = int(math.log2(order)) |
|
bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5) |
|
|
|
result = torch.from_numpy(np.array(im).astype(np.float32)) |
|
tw = math.ceil(result.shape[0] / bayer_matrix.shape[0]) |
|
th = math.ceil(result.shape[1] / bayer_matrix.shape[1]) |
|
tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1) |
|
result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255) |
|
result = result.to(dtype=torch.uint8) |
|
|
|
im = Image.fromarray(result.cpu().numpy()) |
|
im = im.quantize(palette=pal_im, dither=Image.Dither.NONE) |
|
return im |
|
|
|
def quantize(self, image: torch.Tensor, colors: int, dither: str): |
|
batch_size, height, width, _ = image.shape |
|
result = torch.zeros_like(image) |
|
|
|
for b in range(batch_size): |
|
im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB') |
|
|
|
pal_im = im.quantize(colors=colors) |
|
|
|
if dither == "none": |
|
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE) |
|
elif dither == "floyd-steinberg": |
|
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG) |
|
elif dither.startswith("bayer"): |
|
order = int(dither.split('-')[-1]) |
|
quantized_image = Quantize.bayer(im, pal_im, order) |
|
|
|
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255 |
|
result[b] = quantized_array |
|
|
|
return (result,) |
|
|
|
class Sharpen: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"sharpen_radius": ("INT", { |
|
"default": 1, |
|
"min": 1, |
|
"max": 31, |
|
"step": 1 |
|
}), |
|
"sigma": ("FLOAT", { |
|
"default": 1.0, |
|
"min": 0.1, |
|
"max": 10.0, |
|
"step": 0.01 |
|
}), |
|
"alpha": ("FLOAT", { |
|
"default": 1.0, |
|
"min": 0.0, |
|
"max": 5.0, |
|
"step": 0.01 |
|
}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "sharpen" |
|
|
|
CATEGORY = "image/postprocessing" |
|
|
|
def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float): |
|
if sharpen_radius == 0: |
|
return (image,) |
|
|
|
batch_size, height, width, channels = image.shape |
|
image = image.to(comfy.model_management.get_torch_device()) |
|
|
|
kernel_size = sharpen_radius * 2 + 1 |
|
kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10) |
|
center = kernel_size // 2 |
|
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0 |
|
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1) |
|
|
|
tensor_image = image.permute(0, 3, 1, 2) |
|
tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect') |
|
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius] |
|
sharpened = sharpened.permute(0, 2, 3, 1) |
|
|
|
result = torch.clamp(sharpened, 0, 1) |
|
|
|
return (result.to(comfy.model_management.intermediate_device()),) |
|
|
|
class ImageScaleToTotalPixels: |
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] |
|
crop_methods = ["disabled", "center"] |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,), |
|
"megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "upscale" |
|
|
|
CATEGORY = "image/upscaling" |
|
|
|
def upscale(self, image, upscale_method, megapixels): |
|
samples = image.movedim(-1,1) |
|
total = int(megapixels * 1024 * 1024) |
|
|
|
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) |
|
width = round(samples.shape[3] * scale_by) |
|
height = round(samples.shape[2] * scale_by) |
|
|
|
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") |
|
s = s.movedim(1,-1) |
|
return (s,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"ImageBlend": Blend, |
|
"ImageBlur": Blur, |
|
"ImageQuantize": Quantize, |
|
"ImageSharpen": Sharpen, |
|
"ImageScaleToTotalPixels": ImageScaleToTotalPixels, |
|
} |
|
|