|
|
|
def attention_multiply(attn, model, q, k, v, out): |
|
m = model.clone() |
|
sd = model.model_state_dict() |
|
|
|
for key in sd: |
|
if key.endswith("{}.to_q.bias".format(attn)) or key.endswith("{}.to_q.weight".format(attn)): |
|
m.add_patches({key: (None,)}, 0.0, q) |
|
if key.endswith("{}.to_k.bias".format(attn)) or key.endswith("{}.to_k.weight".format(attn)): |
|
m.add_patches({key: (None,)}, 0.0, k) |
|
if key.endswith("{}.to_v.bias".format(attn)) or key.endswith("{}.to_v.weight".format(attn)): |
|
m.add_patches({key: (None,)}, 0.0, v) |
|
if key.endswith("{}.to_out.0.bias".format(attn)) or key.endswith("{}.to_out.0.weight".format(attn)): |
|
m.add_patches({key: (None,)}, 0.0, out) |
|
|
|
return m |
|
|
|
|
|
class UNetSelfAttentionMultiply: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "_for_testing/attention_experiments" |
|
|
|
def patch(self, model, q, k, v, out): |
|
m = attention_multiply("attn1", model, q, k, v, out) |
|
return (m, ) |
|
|
|
class UNetCrossAttentionMultiply: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "_for_testing/attention_experiments" |
|
|
|
def patch(self, model, q, k, v, out): |
|
m = attention_multiply("attn2", model, q, k, v, out) |
|
return (m, ) |
|
|
|
class CLIPAttentionMultiply: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "clip": ("CLIP",), |
|
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("CLIP",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "_for_testing/attention_experiments" |
|
|
|
def patch(self, clip, q, k, v, out): |
|
m = clip.clone() |
|
sd = m.patcher.model_state_dict() |
|
|
|
for key in sd: |
|
if key.endswith("self_attn.q_proj.weight") or key.endswith("self_attn.q_proj.bias"): |
|
m.add_patches({key: (None,)}, 0.0, q) |
|
if key.endswith("self_attn.k_proj.weight") or key.endswith("self_attn.k_proj.bias"): |
|
m.add_patches({key: (None,)}, 0.0, k) |
|
if key.endswith("self_attn.v_proj.weight") or key.endswith("self_attn.v_proj.bias"): |
|
m.add_patches({key: (None,)}, 0.0, v) |
|
if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"): |
|
m.add_patches({key: (None,)}, 0.0, out) |
|
return (m, ) |
|
|
|
class UNetTemporalAttentionMultiply: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"self_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"self_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"cross_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"cross_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "_for_testing/attention_experiments" |
|
|
|
def patch(self, model, self_structural, self_temporal, cross_structural, cross_temporal): |
|
m = model.clone() |
|
sd = model.model_state_dict() |
|
|
|
for k in sd: |
|
if (k.endswith("attn1.to_out.0.bias") or k.endswith("attn1.to_out.0.weight")): |
|
if '.time_stack.' in k: |
|
m.add_patches({k: (None,)}, 0.0, self_temporal) |
|
else: |
|
m.add_patches({k: (None,)}, 0.0, self_structural) |
|
elif (k.endswith("attn2.to_out.0.bias") or k.endswith("attn2.to_out.0.weight")): |
|
if '.time_stack.' in k: |
|
m.add_patches({k: (None,)}, 0.0, cross_temporal) |
|
else: |
|
m.add_patches({k: (None,)}, 0.0, cross_structural) |
|
return (m, ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"UNetSelfAttentionMultiply": UNetSelfAttentionMultiply, |
|
"UNetCrossAttentionMultiply": UNetCrossAttentionMultiply, |
|
"CLIPAttentionMultiply": CLIPAttentionMultiply, |
|
"UNetTemporalAttentionMultiply": UNetTemporalAttentionMultiply, |
|
} |
|
|