|
import nodes |
|
import torch |
|
import comfy.utils |
|
import comfy.sd |
|
import folder_paths |
|
import comfy_extras.nodes_model_merging |
|
|
|
|
|
class ImageOnlyCheckpointLoader: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), |
|
}} |
|
RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE") |
|
FUNCTION = "load_checkpoint" |
|
|
|
CATEGORY = "loaders/video_models" |
|
|
|
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): |
|
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name) |
|
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) |
|
return (out[0], out[3], out[2]) |
|
|
|
|
|
class SVD_img2vid_Conditioning: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "clip_vision": ("CLIP_VISION",), |
|
"init_image": ("IMAGE",), |
|
"vae": ("VAE",), |
|
"width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), |
|
"height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), |
|
"video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}), |
|
"motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}), |
|
"fps": ("INT", {"default": 6, "min": 1, "max": 1024}), |
|
"augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}) |
|
}} |
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") |
|
RETURN_NAMES = ("positive", "negative", "latent") |
|
|
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "conditioning/video_models" |
|
|
|
def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level): |
|
output = clip_vision.encode_image(init_image) |
|
pooled = output.image_embeds.unsqueeze(0) |
|
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) |
|
encode_pixels = pixels[:,:,:,:3] |
|
if augmentation_level > 0: |
|
encode_pixels += torch.randn_like(pixels) * augmentation_level |
|
t = vae.encode(encode_pixels) |
|
positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]] |
|
negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]] |
|
latent = torch.zeros([video_frames, 4, height // 8, width // 8]) |
|
return (positive, negative, {"samples":latent}) |
|
|
|
class VideoLinearCFGGuidance: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "sampling/video_models" |
|
|
|
def patch(self, model, min_cfg): |
|
def linear_cfg(args): |
|
cond = args["cond"] |
|
uncond = args["uncond"] |
|
cond_scale = args["cond_scale"] |
|
|
|
scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1)) |
|
return uncond + scale * (cond - uncond) |
|
|
|
m = model.clone() |
|
m.set_model_sampler_cfg_function(linear_cfg) |
|
return (m, ) |
|
|
|
class VideoTriangleCFGGuidance: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "sampling/video_models" |
|
|
|
def patch(self, model, min_cfg): |
|
def linear_cfg(args): |
|
cond = args["cond"] |
|
uncond = args["uncond"] |
|
cond_scale = args["cond_scale"] |
|
period = 1.0 |
|
values = torch.linspace(0, 1, cond.shape[0], device=cond.device) |
|
values = 2 * (values / period - torch.floor(values / period + 0.5)).abs() |
|
scale = (values * (cond_scale - min_cfg) + min_cfg).reshape((cond.shape[0], 1, 1, 1)) |
|
|
|
return uncond + scale * (cond - uncond) |
|
|
|
m = model.clone() |
|
m.set_model_sampler_cfg_function(linear_cfg) |
|
return (m, ) |
|
|
|
class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave): |
|
CATEGORY = "advanced/model_merging" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"clip_vision": ("CLIP_VISION",), |
|
"vae": ("VAE",), |
|
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} |
|
|
|
def save(self, model, clip_vision, vae, filename_prefix, prompt=None, extra_pnginfo=None): |
|
comfy_extras.nodes_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo) |
|
return {} |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader, |
|
"SVD_img2vid_Conditioning": SVD_img2vid_Conditioning, |
|
"VideoLinearCFGGuidance": VideoLinearCFGGuidance, |
|
"VideoTriangleCFGGuidance": VideoTriangleCFGGuidance, |
|
"ImageOnlyCheckpointSave": ImageOnlyCheckpointSave, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)", |
|
} |
|
|