Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import time | |
from os import path | |
import shutil | |
from datetime import datetime | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
import torch | |
from diffusers import FluxPipeline | |
from PIL import Image | |
# Setup and initialization code | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
gallery_path = path.join(path.dirname(path.abspath(__file__)), "gallery") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
torch.backends.cuda.matmul.allow_tf32 = True | |
# Create gallery directory if it doesn't exist | |
if not path.exists(gallery_path): | |
os.makedirs(gallery_path, exist_ok=True) | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
# Model initialization | |
if not path.exists(cache_path): | |
os.makedirs(cache_path, exist_ok=True) | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) | |
pipe.fuse_lora(lora_scale=0.125) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
css = """ | |
footer {display: none !important} | |
.gradio-container { | |
max-width: 1200px; | |
margin: auto; | |
} | |
.contain { | |
background: rgba(255, 255, 255, 0.05); | |
border-radius: 12px; | |
padding: 20px; | |
} | |
.generate-btn { | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; | |
border: none !important; | |
color: white !important; | |
} | |
.generate-btn:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 5px 15px rgba(0,0,0,0.2); | |
} | |
.title { | |
text-align: center; | |
font-size: 2.5em; | |
font-weight: bold; | |
margin-bottom: 1em; | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
} | |
/* Gallery specific styles */ | |
#gallery { | |
width: 100% !important; | |
max-width: 100% !important; | |
overflow: visible !important; | |
} | |
#gallery > div { | |
width: 100% !important; | |
max-width: none !important; | |
} | |
#gallery > div > div { | |
width: 100% !important; | |
display: grid !important; | |
grid-template-columns: repeat(5, 1fr) !important; | |
gap: 16px !important; | |
padding: 16px !important; | |
} | |
.gallery-container { | |
background: rgba(255, 255, 255, 0.05); | |
border-radius: 8px; | |
margin-top: 10px; | |
width: 100% !important; | |
box-sizing: border-box !important; | |
} | |
/* Force gallery items to maintain aspect ratio */ | |
.gallery-item { | |
width: 100% !important; | |
aspect-ratio: 1 !important; | |
overflow: hidden !important; | |
border-radius: 4px !important; | |
} | |
.gallery-item img { | |
width: 100% !important; | |
height: 100% !important; | |
object-fit: cover !important; | |
border-radius: 4px !important; | |
transition: transform 0.2s; | |
} | |
/* Force gallery items to maintain aspect ratio */ | |
.gallery-item { | |
width: 100% !important; | |
aspect-ratio: 1 !important; | |
overflow: hidden !important; | |
} | |
.gallery-item img { | |
width: 100% !important; | |
height: 100% !important; | |
object-fit: cover !important; | |
border-radius: 4px; | |
transition: transform 0.2s; | |
} | |
.gallery-item img:hover { | |
transform: scale(1.05); | |
} | |
/* Force output image container to full width */ | |
.output-image { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
/* Force container widths */ | |
.contain > div { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
.fixed-width { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
/* Remove any horizontal scrolling */ | |
.gallery-container::-webkit-scrollbar { | |
display: none !important; | |
} | |
.gallery-container { | |
-ms-overflow-style: none !important; | |
scrollbar-width: none !important; | |
} | |
/* Ensure consistent sizing for gallery wrapper */ | |
#gallery > div { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
#gallery > div > div { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
""" | |
def save_image(image): | |
"""Save the generated image and return the path""" | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"generated_{timestamp}.png" | |
filepath = os.path.join(gallery_path, filename) | |
if isinstance(image, Image.Image): | |
image.save(filepath) | |
else: | |
image = Image.fromarray(image) | |
image.save(filepath) | |
return filepath | |
def load_gallery(): | |
"""Load all images from the gallery directory""" | |
image_files = [f for f in os.listdir(gallery_path) if f.endswith(('.png', '.jpg', '.jpeg'))] | |
image_files.sort(reverse=True) # Most recent first | |
return [os.path.join(gallery_path, f) for f in image_files] | |
# Create Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
gr.HTML('<div class="title">AI Image Generator</div>') | |
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>') | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox( | |
label="Image Description", | |
placeholder="Describe the image you want to create...", | |
lines=3 | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
with gr.Row(): | |
steps = gr.Slider( | |
label="Inference Steps", | |
minimum=6, | |
maximum=25, | |
step=1, | |
value=8 | |
) | |
scales = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=5.0, | |
step=0.1, | |
value=3.5 | |
) | |
def get_random_seed(): | |
return torch.randint(0, 1000000, (1,)).item() | |
seed = gr.Number( | |
label="Seed (random by default, set for reproducibility)", | |
value=get_random_seed(), | |
precision=0 | |
) | |
randomize_seed = gr.Button("π² Randomize Seed", elem_classes=["generate-btn"]) | |
generate_btn = gr.Button( | |
"β¨ Generate Image", | |
elem_classes=["generate-btn"] | |
) | |
gr.HTML(""" | |
<div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);"> | |
<h4 style="margin: 0 0 0.5em 0;">Example Prompts:</h4> | |
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;"> | |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π Cinematic Landscape</p> | |
<p style="margin: 0; font-style: italic;">"A breathtaking mountain vista at golden hour, dramatic sunbeams piercing through clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, artistically composed, award-winning landscape photo, shot on Hasselblad"</p> | |
</div> | |
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;"> | |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πΌοΈ Fantasy Portrait</p> | |
<p style="margin: 0; font-style: italic;">"Ethereal portrait of an elven queen with flowing silver hair, adorned with luminescent crystals, intricate crown of twisted gold and moonstone, soft ethereal lighting, detailed facial features, fantasy art style, highly detailed, painted by Artgerm and Charlie Bowater"</p> | |
</div> | |
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;"> | |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π Cyberpunk Scene</p> | |
<p style="margin: 0; font-style: italic;">"Neon-lit cyberpunk street market in rain, holographic advertisements reflecting in puddles, street vendors with glowing cyber-augmentations, dense urban environment, atmospheric fog, cinematic lighting, inspired by Blade Runner 2049"</p> | |
</div> | |
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;"> | |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π¨ Abstract Art</p> | |
<p style="margin: 0; font-style: italic;">"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"</p> | |
</div> | |
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;"> | |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πΏ Macro Nature</p> | |
<p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p> | |
</div> | |
</div> | |
""") | |
with gr.Column(scale=4, elem_classes=["fixed-width"]): | |
# Current generated image | |
output = gr.Image( | |
label="Generated Image", | |
elem_id="output-image", | |
elem_classes=["output-image", "fixed-width"] | |
) | |
gallery = gr.Gallery( | |
label="Generated Images Gallery", | |
show_label=True, | |
elem_id="gallery", | |
columns=[4], | |
rows=[2], | |
height="auto", | |
object_fit="cover", | |
elem_classes=["gallery-container", "fixed-width"] | |
) | |
# Load existing gallery images on startup | |
gallery.value = load_gallery() | |
def process_and_save_image(height, width, steps, scales, prompt, seed): | |
global pipe | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
generated_image = pipe( | |
prompt=[prompt], | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scales), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
# Save the generated image | |
save_image(generated_image) | |
# Return both the generated image and updated gallery | |
return generated_image, load_gallery() | |
# Connect the generation button to both the image output and gallery update | |
def update_seed(): | |
return get_random_seed() | |
generate_btn.click( | |
process_and_save_image, | |
inputs=[height, width, steps, scales, prompt, seed], | |
outputs=[output, gallery] | |
) | |
# Add randomize seed button functionality | |
randomize_seed.click( | |
update_seed, | |
outputs=[seed] | |
) | |
# Also randomize seed after each generation | |
generate_btn.click( | |
update_seed, | |
outputs=[seed] | |
) | |
if __name__ == "__main__": | |
demo.launch() |