Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import time | |
from os import path | |
import shutil | |
from datetime import datetime | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
import torch | |
from diffusers import FluxPipeline | |
from PIL import Image | |
from transformers import pipeline | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
# Hugging Face ν ν° μ€μ | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN is None: | |
raise ValueError("HF_TOKEN environment variable is not set") | |
# Setup and initialization code | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") | |
gallery_path = path.join(PERSISTENT_DIR, "gallery") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
torch.backends.cuda.matmul.allow_tf32 = True | |
# Create gallery directory if it doesn't exist | |
if not path.exists(gallery_path): | |
os.makedirs(gallery_path, exist_ok=True) | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
# Model initialization | |
if not path.exists(cache_path): | |
os.makedirs(cache_path, exist_ok=True) | |
# μΈμ¦λ λͺ¨λΈ λ‘λ | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.bfloat16, | |
use_auth_token=HF_TOKEN | |
) | |
# Hyper-SD LoRA λ‘λ (μΈμ¦ ν¬ν¨) | |
pipe.load_lora_weights( | |
hf_hub_download( | |
"ByteDance/Hyper-SD", | |
"Hyper-FLUX.1-dev-8steps-lora.safetensors", | |
use_auth_token=HF_TOKEN | |
) | |
) | |
pipe.fuse_lora(lora_scale=0.125) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
def save_image(image): | |
"""Save the generated image and return the path""" | |
try: | |
if not os.path.exists(gallery_path): | |
try: | |
os.makedirs(gallery_path, exist_ok=True) | |
except Exception as e: | |
print(f"Failed to create gallery directory: {str(e)}") | |
return None | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
random_suffix = os.urandom(4).hex() | |
filename = f"generated_{timestamp}_{random_suffix}.png" | |
filepath = os.path.join(gallery_path, filename) | |
try: | |
if isinstance(image, Image.Image): | |
image.save(filepath, "PNG", quality=100) | |
else: | |
image = Image.fromarray(image) | |
image.save(filepath, "PNG", quality=100) | |
if not os.path.exists(filepath): | |
print(f"Warning: Failed to verify saved image at {filepath}") | |
return None | |
return filepath | |
except Exception as e: | |
print(f"Failed to save image: {str(e)}") | |
return None | |
except Exception as e: | |
print(f"Error in save_image: {str(e)}") | |
return None | |
# Create Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox( | |
label="Image Description", | |
placeholder="Describe the image you want to create...", | |
lines=3 | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
with gr.Row(): | |
steps = gr.Slider( | |
label="Inference Steps", | |
minimum=6, | |
maximum=25, | |
step=1, | |
value=8 | |
) | |
scales = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=5.0, | |
step=0.1, | |
value=3.5 | |
) | |
def get_random_seed(): | |
return torch.randint(0, 1000000, (1,)).item() | |
seed = gr.Number( | |
label="Seed (random by default, set for reproducibility)", | |
value=get_random_seed(), | |
precision=0 | |
) | |
randomize_seed = gr.Button("π² Randomize Seed", elem_classes=["generate-btn"]) | |
generate_btn = gr.Button( | |
"β¨ Generate Image", | |
elem_classes=["generate-btn"] | |
) | |
with gr.Column(scale=4, elem_classes=["fixed-width"]): | |
output = gr.Image( | |
label="Generated Image", | |
elem_id="output-image", | |
elem_classes=["output-image", "fixed-width"] | |
) | |
def process_and_save_image(height, width, steps, scales, prompt, seed): | |
global pipe | |
# νκΈ κ°μ§ λ° λ²μ | |
def contains_korean(text): | |
return any(ord('κ°') <= ord(c) <= ord('ν£') for c in text) | |
# ν둬ννΈ μ μ²λ¦¬ | |
if contains_korean(prompt): | |
# νκΈμ μμ΄λ‘ λ²μ | |
translated = translator(prompt)[0]['translation_text'] | |
prompt = translated | |
# ν둬ννΈ νμ κ°μ | |
formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background" | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
try: | |
generated_image = pipe( | |
prompt=[formatted_prompt], | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scales), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
saved_path = save_image(generated_image) | |
if saved_path is None: | |
print("Warning: Failed to save generated image") | |
return generated_image | |
except Exception as e: | |
print(f"Error in image generation: {str(e)}") | |
return None | |
def update_seed(): | |
return get_random_seed() | |
generate_btn.click( | |
process_and_save_image, | |
inputs=[height, width, steps, scales, prompt, seed], | |
outputs=output | |
) | |
randomize_seed.click( | |
update_seed, | |
outputs=[seed] | |
) | |
generate_btn.click( | |
update_seed, | |
outputs=[seed] | |
) | |
if __name__ == "__main__": | |
demo.launch(allowed_paths=[PERSISTENT_DIR]) |