Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,19 +3,27 @@ import argparse
|
|
3 |
import os
|
4 |
import time
|
5 |
from os import path
|
|
|
|
|
6 |
from safetensors.torch import load_file
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import gradio as gr
|
9 |
import torch
|
10 |
from diffusers import FluxPipeline
|
|
|
11 |
|
12 |
# Setup and initialization code
|
13 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
|
|
14 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
15 |
os.environ["HF_HUB_CACHE"] = cache_path
|
16 |
os.environ["HF_HOME"] = cache_path
|
17 |
torch.backends.cuda.matmul.allow_tf32 = True
|
18 |
|
|
|
|
|
|
|
|
|
19 |
class timer:
|
20 |
def __init__(self, method_name="timed process"):
|
21 |
self.method = method_name
|
@@ -58,11 +66,50 @@ footer {display: none !important}
|
|
58 |
-webkit-background-clip: text;
|
59 |
-webkit-text-fill-color: transparent;
|
60 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"""
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# Create Gradio interface
|
64 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
65 |
-
gr.HTML('<div class="title">
|
66 |
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
|
67 |
|
68 |
with gr.Row():
|
@@ -140,24 +187,32 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
140 |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">🌿 Macro Nature</p>
|
141 |
<p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p>
|
142 |
</div>
|
143 |
-
<h4 style="margin: 1em 0 0.5em 0;">Tips for best results:</h4>
|
144 |
-
<ul style="margin: 0; padding-left: 1.2em;">
|
145 |
-
<li>Be specific in your descriptions</li>
|
146 |
-
<li>Include details about style, lighting, and mood</li>
|
147 |
-
<li>Reference specific artists or techniques</li>
|
148 |
-
<li>Experiment with different guidance scales</li>
|
149 |
-
</ul>
|
150 |
</div>
|
151 |
""")
|
152 |
|
153 |
with gr.Column(scale=4):
|
|
|
154 |
output = gr.Image(label="Generated Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
@spaces.GPU
|
157 |
-
def
|
158 |
global pipe
|
159 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
160 |
-
|
161 |
prompt=[prompt],
|
162 |
generator=torch.Generator().manual_seed(int(seed)),
|
163 |
num_inference_steps=int(steps),
|
@@ -166,11 +221,18 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
166 |
width=int(width),
|
167 |
max_sequence_length=256
|
168 |
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
|
|
170 |
generate_btn.click(
|
171 |
-
|
172 |
inputs=[height, width, steps, scales, prompt, seed],
|
173 |
-
outputs=output
|
174 |
)
|
175 |
|
176 |
if __name__ == "__main__":
|
|
|
3 |
import os
|
4 |
import time
|
5 |
from os import path
|
6 |
+
import shutil
|
7 |
+
from datetime import datetime
|
8 |
from safetensors.torch import load_file
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
import gradio as gr
|
11 |
import torch
|
12 |
from diffusers import FluxPipeline
|
13 |
+
from PIL import Image
|
14 |
|
15 |
# Setup and initialization code
|
16 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
17 |
+
gallery_path = path.join(path.dirname(path.abspath(__file__)), "gallery")
|
18 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
19 |
os.environ["HF_HUB_CACHE"] = cache_path
|
20 |
os.environ["HF_HOME"] = cache_path
|
21 |
torch.backends.cuda.matmul.allow_tf32 = True
|
22 |
|
23 |
+
# Create gallery directory if it doesn't exist
|
24 |
+
if not path.exists(gallery_path):
|
25 |
+
os.makedirs(gallery_path, exist_ok=True)
|
26 |
+
|
27 |
class timer:
|
28 |
def __init__(self, method_name="timed process"):
|
29 |
self.method = method_name
|
|
|
66 |
-webkit-background-clip: text;
|
67 |
-webkit-text-fill-color: transparent;
|
68 |
}
|
69 |
+
.gallery-container {
|
70 |
+
display: grid;
|
71 |
+
grid-template-columns: repeat(auto-fill, minmax(150px, 1fr));
|
72 |
+
gap: 10px;
|
73 |
+
padding: 10px;
|
74 |
+
background: rgba(255, 255, 255, 0.05);
|
75 |
+
border-radius: 8px;
|
76 |
+
margin-top: 10px;
|
77 |
+
}
|
78 |
+
.gallery-image {
|
79 |
+
width: 100%;
|
80 |
+
aspect-ratio: 1;
|
81 |
+
object-fit: cover;
|
82 |
+
border-radius: 4px;
|
83 |
+
transition: transform 0.2s;
|
84 |
+
}
|
85 |
+
.gallery-image:hover {
|
86 |
+
transform: scale(1.05);
|
87 |
+
}
|
88 |
"""
|
89 |
|
90 |
+
def save_image(image):
|
91 |
+
"""Save the generated image and return the path"""
|
92 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
93 |
+
filename = f"generated_{timestamp}.png"
|
94 |
+
filepath = os.path.join(gallery_path, filename)
|
95 |
+
|
96 |
+
if isinstance(image, Image.Image):
|
97 |
+
image.save(filepath)
|
98 |
+
else:
|
99 |
+
image = Image.fromarray(image)
|
100 |
+
image.save(filepath)
|
101 |
+
|
102 |
+
return filepath
|
103 |
+
|
104 |
+
def load_gallery():
|
105 |
+
"""Load all images from the gallery directory"""
|
106 |
+
image_files = [f for f in os.listdir(gallery_path) if f.endswith(('.png', '.jpg', '.jpeg'))]
|
107 |
+
image_files.sort(reverse=True) # Most recent first
|
108 |
+
return [os.path.join(gallery_path, f) for f in image_files]
|
109 |
+
|
110 |
# Create Gradio interface
|
111 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
112 |
+
gr.HTML('<div class="title">AI Image Generator</div>')
|
113 |
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
|
114 |
|
115 |
with gr.Row():
|
|
|
187 |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">🌿 Macro Nature</p>
|
188 |
<p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p>
|
189 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
</div>
|
191 |
""")
|
192 |
|
193 |
with gr.Column(scale=4):
|
194 |
+
# Current generated image
|
195 |
output = gr.Image(label="Generated Image")
|
196 |
+
|
197 |
+
# Gallery of generated images
|
198 |
+
gallery = gr.Gallery(
|
199 |
+
label="Generated Images Gallery",
|
200 |
+
show_label=True,
|
201 |
+
elem_id="gallery",
|
202 |
+
columns=[4],
|
203 |
+
rows=[2],
|
204 |
+
height="auto",
|
205 |
+
object_fit="contain"
|
206 |
+
)
|
207 |
+
|
208 |
+
# Load existing gallery images on startup
|
209 |
+
gallery.value = load_gallery()
|
210 |
|
211 |
@spaces.GPU
|
212 |
+
def process_and_save_image(height, width, steps, scales, prompt, seed):
|
213 |
global pipe
|
214 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
215 |
+
generated_image = pipe(
|
216 |
prompt=[prompt],
|
217 |
generator=torch.Generator().manual_seed(int(seed)),
|
218 |
num_inference_steps=int(steps),
|
|
|
221 |
width=int(width),
|
222 |
max_sequence_length=256
|
223 |
).images[0]
|
224 |
+
|
225 |
+
# Save the generated image
|
226 |
+
save_image(generated_image)
|
227 |
+
|
228 |
+
# Return both the generated image and updated gallery
|
229 |
+
return generated_image, load_gallery()
|
230 |
|
231 |
+
# Connect the generation button to both the image output and gallery update
|
232 |
generate_btn.click(
|
233 |
+
process_and_save_image,
|
234 |
inputs=[height, width, steps, scales, prompt, seed],
|
235 |
+
outputs=[output, gallery]
|
236 |
)
|
237 |
|
238 |
if __name__ == "__main__":
|