Spaces:
Running
Running
File size: 5,468 Bytes
61bc6f1 bd5645e 61bc6f1 fc5da88 61bc6f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
import gradio as gr
import networkx as nx
import matplotlib.pyplot as plt
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain.chains import GraphQAChain
from langchain_core.documents import Document
from langchain_community.graphs.networkx_graph import NetworkxEntityGraph
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq
import pandas as pd
from gradio_client import Client
import numpy as np
from PIL import Image as PILImage
import base64
from io import BytesIO
# Set the base directory
BASE_DIR = os.getcwd()
GROQ_API_KEY = os.environ.get('GROQ_API_KEY')
# Set up LLM and Flux client
llm = ChatGroq(temperature=0, model_name='llama-3.1-8b-instant', groq_api_key=GROQ_API_KEY)
flux_client = Client("black-forest-labs/Flux.1-schnell")
def create_graph(text):
documents = [Document(page_content=text)]
llm_transformer_filtered = LLMGraphTransformer(llm=llm)
graph_documents_filtered = llm_transformer_filtered.convert_to_graph_documents(documents)
graph = NetworkxEntityGraph()
for node in graph_documents_filtered[0].nodes:
graph.add_node(node.id)
for edge in graph_documents_filtered[0].relationships:
graph._graph.add_edge(
edge.source.id,
edge.target.id,
relation=edge.type
)
return graph, graph_documents_filtered
def visualize_graph(graph):
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(graph._graph)
nx.draw(graph._graph, pos, with_labels=True, node_color='lightblue', node_size=500, font_size=8, font_weight='bold')
edge_labels = nx.get_edge_attributes(graph._graph, 'relation')
nx.draw_networkx_edge_labels(graph._graph, pos, edge_labels=edge_labels, font_size=6)
plt.title("Graph Visualization")
plt.axis('off')
# Save the plot as an image file
graph_viz_path = os.path.join(BASE_DIR, 'graph_visualization.png')
plt.savefig(graph_viz_path)
plt.close()
return graph_viz_path
def generate_image(prompt):
try:
print(f"Generating image with prompt: {prompt}")
result = flux_client.predict(
prompt=prompt,
seed=0,
randomize_seed=True,
width=1024,
height=1024,
num_inference_steps=4,
api_name="/infer"
)
if isinstance(result, tuple) and len(result) > 0 and isinstance(result[0], str):
img_str = result[0]
img_str += '=' * (-len(img_str) % 4)
img_data = base64.b64decode(img_str)
image = PILImage.open(BytesIO(img_data))
elif isinstance(result, tuple) and len(result) > 0 and isinstance(result[0], np.ndarray):
image = PILImage.fromarray((result[0] * 255).astype(np.uint8))
elif isinstance(result, PILImage.Image):
image = result
else:
raise ValueError(f"Unexpected result format from flux_client.predict: {type(result)}")
image_path = os.path.join(BASE_DIR, 'generated_image.png')
image.save(image_path)
print(f"Image saved to: {image_path}")
return image_path
except Exception as e:
print(f"Error in generate_image: {str(e)}")
import traceback
traceback.print_exc()
return None
def process_text(text, question):
try:
print("Creating graph...")
graph, graph_documents_filtered = create_graph(text)
print("Setting up GraphQAChain...")
graph_rag = GraphQAChain.from_llm(
llm=llm,
graph=graph,
verbose=True
)
print("Running question through GraphQAChain...")
answer = graph_rag.run(question)
print(f"Answer: {answer}")
print("Visualizing graph...")
graph_viz_path = visualize_graph(graph)
print(f"Graph visualization saved to: {graph_viz_path}")
print("Generating summary...")
summary_prompt = f"Summarize the following text in one sentence: {text}"
summary = llm.invoke(summary_prompt).content
print(f"Summary: {summary}")
print("Generating image...")
image_path = generate_image(summary)
if image_path and os.path.exists(image_path):
print(f"Generated image saved to: {image_path}")
else:
print("Failed to generate or save image")
return answer, graph_viz_path, summary, image_path
except Exception as e:
print(f"An error occurred in process_text: {str(e)}")
import traceback
traceback.print_exc()
return str(e), None, str(e), None
def ui_function(text, question):
answer, graph_viz_path, summary, image_path = process_text(text, question)
if isinstance(answer, str) and answer.startswith("An error occurred"):
return answer, None, answer, None
return answer, graph_viz_path, summary, image_path
# Create Gradio interface
iface = gr.Interface(
fn=ui_function,
inputs=[
gr.Textbox(label="Input Text"),
gr.Textbox(label="Question")
],
outputs=[
gr.Textbox(label="Answer"),
gr.Image(label="Graph Visualization", type="filepath"),
gr.Textbox(label="Summary"),
gr.Image(label="Generated Image", type="filepath")
],
title="GraphRAG and Image Generation UI",
description="Enter text to create a graph, ask a question, and generate a relevant image."
)
iface.launch() |