{ "cells": [ { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import csv\n", "import numpy as np\n", "import pandas as pd\n", "\n", "def gerar_metricas(nome_projeto):\n", " list_output_MbR = []\n", " with open(\"metricas/metricas_{}_MbR.csv\".format(nome_projeto), \"r\") as arquivo:\n", " arquivo_csv = csv.reader(arquivo)\n", " for i, linha in enumerate(arquivo_csv):\n", " list_output_MbR.append(float(linha[0]))\n", " list_output_NEOSP_SVR = []\n", " with open(\"metricas/metricas_{}_NEOSP_SVR.csv\".format(nome_projeto), \"r\") as arquivo:\n", " arquivo_csv = csv.reader(arquivo)\n", " for i, linha in enumerate(arquivo_csv):\n", " list_output_NEOSP_SVR.append(float(linha[0]))\n", " list_output_TFIDF_SVR = []\n", " with open(\"metricas/metricas_{}_TFIDF.csv\".format(nome_projeto), \"r\") as arquivo:\n", " arquivo_csv = csv.reader(arquivo)\n", " for i, linha in enumerate(arquivo_csv):\n", " list_output_TFIDF_SVR.append(float(linha[0]))\n", " \n", " list_results = [[\"MbR Regressor\", np.mean(list_output_MbR)], [\"NEOSP-SVR Regressor\", np.mean(list_output_NEOSP_SVR)], [\"TFIDF-SVR Regressor\", np.mean(list_output_TFIDF_SVR)]]\n", " \n", " df = pd.DataFrame(list_results, columns=[\"Model\", \"MAE\"])\n", " \n", " df_list_output_MbR = pd.DataFrame(list_output_MbR, columns=[\"MAE_MbR\"])\n", " df_list_output_NEOSP = pd.DataFrame(list_output_NEOSP_SVR, columns=[\"MAE_NEOSP\"])\n", " df_list_output_TFIDF = pd.DataFrame(list_output_TFIDF_SVR, columns=[\"MAE_TFIDF\"])\n", " \n", " return df_list_output_MbR, df_list_output_NEOSP, df_list_output_TFIDF" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "#LIBRARIES_TAWOS = [\"ALOY\", \"APSTUD\", \"CLI\", \"CLOV\", \"COMPASS\", \"CONFCLOUD\", \"CONFSERVER\", \"DAEMON\", \"DM\", \"DNN\", \"DURACLOUD\", \"EVG\", \"FAB\", \n", "# \"MDL\", \"MESOS\" ,\"MULE\", \"NEXUS\", \"SERVER\", \"STL\", \"TIDOC\", \"TIMOB\", \"TISTUD\", \"XD\"]\n", "\n", "LIBRARIES_NEO = [\"7764\", \n", " \"250833\", \n", " #\"278964\"\n", " \"734943\", \n", " #\"1304532\",\n", " #\"1714548\", \n", " \"2009901\",\n", " \"2670515\", \n", " \"3828396\",\n", " \"3836952\", \n", " \"4456656\", \n", " \"5261717\",\n", " \"6206924\", \n", " \"7071551\", \n", " \"7128869\",\n", " \"7603319\",\n", " \"7776928\", \n", " \"10152778\",\n", " \"10171263\", \n", " \"10171270\", \n", " \"10171280\",\n", " \"10174980\", \n", " \"12450835\",\n", " \"12584701\",\n", " \"12894267\",\n", " \"14052249\",\n", " \"14976868\", \n", " \"15502567\",\n", " \"19921167\", \n", " \"21149814\", \n", " \"23285197\", \n", " \"28419588\",\n", " \"28644964\", \n", " \"28847821\"\n", " ]\n", "#RETIRADOS = [] Muito grande\n", "#RETIRADO2 = [] valores NaN\n", "lista = list()\n", "for project_name in LIBRARIES_NEO:\n", " df_list_output_MbR, df_list_output_NEOSP, df_list_output_TFIDF = gerar_metricas(project_name)\n", " lista.append([project_name, df_list_output_MbR[\"MAE_MbR\"].mean(), df_list_output_NEOSP[\"MAE_NEOSP\"].mean(), df_list_output_TFIDF[\"MAE_TFIDF\"].mean()])\n", "\n", "df_media = pd.DataFrame(lista, columns=[\"Projeto\", \"MAE_MbR\", \"MAE_NEOSP\", \"MAE_TFIDF\"])\n", "df_media.to_csv(\"_METRICAS_NEO.csv\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }