File size: 17,524 Bytes
d6b3b9f
01942d8
88f768f
71788ef
34009a0
60a5363
 
d6b3b9f
01c4e21
583defc
 
 
0c7d7d0
3a0ee14
d6b3b9f
71788ef
 
 
 
d6b3b9f
 
 
 
88f768f
 
 
 
 
 
 
 
 
1aa43b4
88f768f
 
 
 
01942d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c7d7d0
88f768f
 
0c7d7d0
01c4e21
 
0c7d7d0
 
 
01c4e21
 
3a0ee14
01c4e21
88f768f
0c7d7d0
01c4e21
 
0c7d7d0
 
 
01c4e21
 
3a0ee14
01c4e21
88f768f
01942d8
 
 
27538a2
01942d8
 
88f768f
27538a2
1bf401f
88f768f
27538a2
1bf401f
27538a2
 
 
 
01c4e21
 
0c7d7d0
 
 
01c4e21
 
3a0ee14
01c4e21
27538a2
 
85095eb
583defc
 
01c4e21
0c7d7d0
01c4e21
 
 
 
3a0ee14
85095eb
01942d8
01c4e21
 
3a0ee14
85095eb
 
 
3a0ee14
 
 
85095eb
3a0ee14
 
85095eb
 
 
 
 
0c7d7d0
 
 
85095eb
3a0ee14
 
85095eb
 
ea670d5
 
01c4e21
0c7d7d0
1aa43b4
 
0c7d7d0
01c4e21
0c7d7d0
3a0ee14
01c4e21
ea670d5
 
3a0ee14
0942332
3a0ee14
f8d2118
3a0ee14
 
 
 
f8d2118
 
0942332
d57b1dd
60a5363
 
 
 
 
 
 
 
 
 
 
 
3a0ee14
0942332
3a0ee14
60a5363
d57b1dd
34009a0
 
60a5363
34009a0
60a5363
 
 
 
 
 
583defc
60a5363
d57b1dd
79d57ff
 
 
 
 
 
01942d8
d6b3b9f
1aa43b4
 
 
 
 
 
 
 
 
0c7d7d0
1aa43b4
0c7d7d0
1aa43b4
 
 
0c7d7d0
1aa43b4
 
3a0ee14
0c7d7d0
3a0ee14
0c7d7d0
 
3a0ee14
 
 
 
0c7d7d0
 
 
 
 
 
 
3a0ee14
0c7d7d0
1aa43b4
0c7d7d0
3a0ee14
0c7d7d0
 
 
 
 
 
3a0ee14
0c7d7d0
 
 
 
 
 
 
 
27381a7
 
3a0ee14
 
 
 
 
 
 
27381a7
1aa43b4
d6b3b9f
 
1aa43b4
d6b3b9f
 
 
1aa43b4
 
d6b3b9f
1aa43b4
54410d4
 
1aa43b4
3a0ee14
 
 
 
0c7d7d0
 
 
1aa43b4
 
 
3a0ee14
 
 
1aa43b4
3a0ee14
1aa43b4
0c7d7d0
 
3a0ee14
0c7d7d0
3a0ee14
0c7d7d0
 
 
 
3a0ee14
0c7d7d0
 
 
 
 
27381a7
ea670d5
1aa43b4
ea670d5
 
0c7d7d0
ea670d5
0c7d7d0
3a0ee14
0c7d7d0
3a0ee14
 
0c7d7d0
3a0ee14
 
0c7d7d0
3a0ee14
 
0c7d7d0
3a0ee14
0c7d7d0
3a0ee14
 
 
 
 
 
 
 
 
 
 
ea670d5
 
 
 
 
 
 
27381a7
3a0ee14
27381a7
01942d8
79d57ff
 
 
01942d8
 
1aa43b4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import gradio as gr
import datasets
import huggingface_hub
import os
import time
import subprocess
import logging

import json

from transformers.pipelines import TextClassificationPipeline

from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
from utils import read_scanners, write_scanners, read_inference_type, write_inference_type, convert_column_mapping_to_json

HF_REPO_ID = 'HF_REPO_ID'
HF_SPACE_ID = 'SPACE_ID'
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'

theme = gr.themes.Soft(
    primary_hue="green",
)

def check_model(model_id):
    try:
        task = huggingface_hub.model_info(model_id).pipeline_tag
    except Exception:
        return None, None

    try:
        from transformers import pipeline
        ppl = pipeline(task=task, model=model_id)

        return model_id, ppl
    except Exception as e:
        return model_id, e


def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
    try:
        configs = datasets.get_dataset_config_names(dataset_id)
    except Exception:
        # Dataset may not exist
        return None, dataset_config, dataset_split

    if dataset_config not in configs:
        # Need to choose dataset subset (config)
        return dataset_id, configs, dataset_split

    ds = datasets.load_dataset(dataset_id, dataset_config)

    if isinstance(ds, datasets.DatasetDict):
        # Need to choose dataset split
        if dataset_split not in ds.keys():
            return dataset_id, None, list(ds.keys())
    elif not isinstance(ds, datasets.Dataset):
        # Unknown type
        return dataset_id, None, None
    return dataset_id, dataset_config, dataset_split

def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping='{}'):
    # Validate model
    if m_id is None:
        gr.Warning('Model is not accessible. Please set your HF_TOKEN if it is a private model.')
        return (
            gr.update(interactive=False),   # Submit button
            gr.update(visible=True),       # Loading row
            gr.update(visible=False),        # Preview row
            gr.update(visible=False),       # Model prediction input
            gr.update(visible=False),       # Model prediction preview
            gr.update(visible=False),       # Label mapping preview
            gr.update(visible=False),       # feature mapping preview
        )
    if isinstance(ppl, Exception):
        gr.Warning(f'Failed to load model": {ppl}')
        return (
            gr.update(interactive=False),   # Submit button
            gr.update(visible=True),       # Loading row
            gr.update(visible=False),        # Preview row
            gr.update(visible=False),       # Model prediction input
            gr.update(visible=False),       # Model prediction preview
            gr.update(visible=False),       # Label mapping preview
            gr.update(visible=False),       # feature mapping preview
        )

    # Validate dataset
    d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split)

    dataset_ok = False
    if d_id is None:
        gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.')
    elif isinstance(config, list):
        gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.')
        config = gr.update(choices=config, value=config[0])
    elif isinstance(split, list):
        gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.')
        split = gr.update(choices=split, value=split[0])
    else:
        dataset_ok = True

    if not dataset_ok:
        return (
            gr.update(interactive=False),   # Submit button
            gr.update(visible=True),       # Loading row
            gr.update(visible=False),        # Preview row
            gr.update(visible=False),       # Model prediction input
            gr.update(visible=False),       # Model prediction preview
            gr.update(visible=False),       # Label mapping preview
            gr.update(visible=False),       # feature mapping preview
        )

    # TODO: Validate column mapping by running once
    prediction_result = None
    id2label_df = None
    if isinstance(ppl, TextClassificationPipeline):
        try:
            print('validating phase, ', column_mapping)
            column_mapping = json.loads(column_mapping)
        except Exception:
            column_mapping = {}

        column_mapping, prediction_input, prediction_result, id2label_df, feature_df = \
            text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)

        column_mapping = json.dumps(column_mapping, indent=2)

    if prediction_result is None and id2label_df is not None:
        gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.')
        return (
            gr.update(interactive=False),   # Submit button
            gr.update(visible=False),       # Loading row
            gr.update(visible=True),        # Preview row
            gr.update(value=f'**Sample Input**: {prediction_input}', visible=True),       # Model prediction input
            gr.update(visible=False),   # Model prediction preview
            gr.update(value=id2label_df, visible=True, interactive=True),   # Label mapping preview
            gr.update(value=feature_df, visible=True, interactive=True),   # feature mapping preview
        )
    elif id2label_df is None:
        gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
        return (
            gr.update(interactive=False),   # Submit button
            gr.update(visible=False),       # Loading row
            gr.update(visible=True),        # Preview row
            gr.update(value=f'**Sample Input**: {prediction_input}', visible=True),       # Model prediction input
            gr.update(value=prediction_result, visible=True),   # Model prediction preview
            gr.update(visible=True, interactive=True),   # Label mapping preview
            gr.update(visible=True, interactive=True),   # feature mapping preview
        )

    gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")

    return (
        gr.update(interactive=True),    # Submit button
        gr.update(visible=False),       # Loading row
        gr.update(visible=True),        # Preview row
        gr.update(value=f'**Sample Input**: {prediction_input}', visible=True),       # Model prediction input
        gr.update(value=prediction_result, visible=True),   # Model prediction preview
        gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
        gr.update(value=feature_df, visible=True, interactive=True),   # feature mapping preview
    )


def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_mapping_dataframe, local):
    label_mapping = {}
    for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
        label_mapping.update({str(i): label})
    
    feature_mapping = {}
    for i, feature in feature_mapping_dataframe["Dataset Features"].items():
        feature_mapping.update({feature_mapping_dataframe["Model Input Features"][i]: feature})

    # TODO: Set column mapping for some dataset such as `amazon_polarity`

    if local:
        command = [
            "python",
            "cli.py",
            "--loader", "huggingface",
            "--model", m_id,
            "--dataset", d_id,
            "--dataset_config", config,
            "--dataset_split", split,
            "--hf_token", os.environ.get(HF_WRITE_TOKEN),
            "--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
            "--output_format", "markdown",
            "--output_portal", "huggingface",
            "--feature_mapping", json.dumps(feature_mapping),
            "--label_mapping", json.dumps(label_mapping),
            "--scan_config", "./config.yaml",
        ]

        eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
        start = time.time()
        logging.info(f"Start local evaluation on {eval_str}")

        evaluator = subprocess.Popen(
            command,
            cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
            stderr=subprocess.STDOUT,
        )
        result = evaluator.wait()

        logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")

        gr.Info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
    else:
        gr.Info("TODO: Submit task to an endpoint")
    
    return gr.update(interactive=True)  # Submit button


with gr.Blocks(theme=theme) as iface:
    with gr.Tab("Text Classification"):
        def check_dataset_and_get_config(dataset_id):
            try:
                configs = datasets.get_dataset_config_names(dataset_id)
                return gr.Dropdown(configs, value=configs[0], visible=True)
            except Exception:
                # Dataset may not exist
                pass

        def check_dataset_and_get_split(dataset_config, dataset_id):
            try:
                splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
                return gr.Dropdown(splits, value=splits[0], visible=True)
            except Exception as e:
                # Dataset may not exist
                gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
                pass
        
        def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None, feature_mapping_dataframe=None):
            column_mapping = '{}'
            _, ppl = check_model(model_id=model_id)

            if id2label_mapping_dataframe is not None:
                labels = convert_column_mapping_to_json(id2label_mapping_dataframe.value, label="data")
                features = convert_column_mapping_to_json(feature_mapping_dataframe.value, label="text")
                column_mapping = json.dumps({**labels, **features}, indent=2)

            if check_column_mapping_keys_validity(column_mapping, ppl) is False:
                gr.Warning('Label mapping table has invalid contents. Please check again.')
                return (gr.update(interactive=False), 
                        gr.update(),
                        gr.update(),
                        gr.update(),
                        gr.update(),
                        gr.update(),
                        gr.update())
            else:
                if model_id and dataset_id and dataset_config and dataset_split:
                    return try_validate(model_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping)
                else:
                    return (gr.update(interactive=False), 
                            gr.update(visible=True),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False))
        with gr.Row():
            gr.Markdown('''
                <h1 style="text-align: center;">
                Giskard Evaluator
                </h1>
                Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model in no time.
                ''')
        with gr.Row():
            run_local = gr.Checkbox(value=True, label="Run in this Space")
            use_inference = read_inference_type('./config.yaml') == 'hf_inference_api'
            run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
        
        with gr.Row() as advanced_row:
            selected = read_scanners('./config.yaml')
            scan_config = selected + ['data_leakage']
            scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)

        with gr.Row():
            model_id_input = gr.Textbox(
                label="Hugging Face model id",
                placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest",
            )

            dataset_id_input = gr.Textbox(
                label="Hugging Face Dataset id",
                placeholder="tweet_eval",
            )
        with gr.Row():
            dataset_config_input = gr.Dropdown(['default'], value='default', label='Dataset Config', visible=False)
            dataset_split_input = gr.Dropdown(['default'], value='default', label='Dataset Split', visible=False)

            dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
            dataset_id_input.submit(check_dataset_and_get_config, dataset_id_input, dataset_config_input)

            dataset_config_input.blur(
                check_dataset_and_get_split, 
                inputs=[dataset_config_input, dataset_id_input], 
                outputs=[dataset_split_input])
        
        with gr.Row(visible=True) as loading_row:
            gr.Markdown('''
                        <p style="text-align: center;">
                        🚀🐢Please validate your model and dataset first...
                        </p>
                        ''')
            
        with gr.Row(visible=False) as preview_row:
            gr.Markdown('''
                <h1 style="text-align: center;">
                Confirm Pre-processing Details
                </h1>
                Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
                ''')
        
        with gr.Row():
            id2label_mapping_dataframe = gr.DataFrame(label="Preview of label mapping", interactive=True, visible=False)
            feature_mapping_dataframe = gr.DataFrame(label="Preview of feature mapping", interactive=True, visible=False)
        with gr.Row():
            example_input = gr.Markdown('Sample Input: ', visible=False)
        
        with gr.Row():
            example_labels = gr.Label(label='Model Prediction Sample', visible=False)
        
        run_btn = gr.Button(
            "Get Evaluation Result",
            variant="primary",
            interactive=False,
            size="lg",
        )

        model_id_input.blur(gate_validate_btn, 
                                inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input], 
                                outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
        dataset_id_input.blur(gate_validate_btn, 
                                inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input], 
                                outputs=[run_btn, loading_row, preview_row, example_input,  example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
        dataset_config_input.input(gate_validate_btn,
                                inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
                                outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
        dataset_split_input.input(gate_validate_btn,
                                inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
                                outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
        id2label_mapping_dataframe.input(gate_validate_btn,
                                inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
                                outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
        feature_mapping_dataframe.input(gate_validate_btn,
                                inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
                                outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
        scanners.change(write_scanners, inputs=scanners)
        run_inference.change(
            write_inference_type,
            inputs=[run_inference]
        )

        run_btn.click(
            try_submit,
            inputs=[
                model_id_input,
                dataset_id_input,
                dataset_config_input,
                dataset_split_input,
                id2label_mapping_dataframe,
                feature_mapping_dataframe,
                run_local,
            ],
            outputs=[
                run_btn,
            ],
        )

    with gr.Tab("More"):
        pass

if __name__ == "__main__":
    iface.queue(max_size=20).launch()