File size: 1,735 Bytes
3a0ee14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import yaml

YAML_PATH = "./config.yaml"

class Dumper(yaml.Dumper):
    def increase_indent(self, flow=False, *args, **kwargs):
        return super().increase_indent(flow=flow, indentless=False)
    
# read scanners from yaml file
# return a list of scanners
def read_scanners(path):
    scanners = []
    with open(path, "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        scanners = config.get("detectors", None)
    return scanners

# convert a list of scanners to yaml file
def write_scanners(scanners):
    with open(YAML_PATH, "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)

    config["detectors"] = scanners
    with open(YAML_PATH, "w") as f:
        # save scanners to detectors in yaml
        yaml.dump(config, f, Dumper=Dumper)

# read model_type from yaml file
def read_inference_type(path):
    inference_type = ""
    with open(path, "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        inference_type = config.get("inference_type", None)
    return inference_type

# write model_type to yaml file
def write_inference_type(use_inference):
    with open(YAML_PATH, "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    if use_inference:
        config["inference_type"] = 'hf_inference_api'
    else:
        config["inference_type"] = 'hf_pipeline'
    with open(YAML_PATH, "w") as f:
        # save inference_type to inference_type in yaml
        yaml.dump(config, f, Dumper=Dumper)

# convert column mapping dataframe to json
def convert_column_mapping_to_json(df, label=""):
    column_mapping = {}
    column_mapping[label] = []
    for _, row in df.iterrows():
        column_mapping[label].append(row.tolist())
    return column_mapping