Spaces:
Sleeping
Sleeping
File size: 5,171 Bytes
ed3fe33 58c39e0 ed3fe33 8f809e2 3573a39 ed3fe33 58c39e0 ed3fe33 3573a39 92e2a79 ed3fe33 8f809e2 1c00552 92e2a79 8f809e2 92e2a79 8f809e2 3573a39 8f809e2 1c00552 92e2a79 8f809e2 3573a39 ed3fe33 3573a39 92e2a79 8f809e2 1c00552 92e2a79 3573a39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import json
import logging
import os
import subprocess
import threading
import time
from pathlib import Path
import pipe
from app_env import (
HF_GSK_HUB_HF_TOKEN,
HF_GSK_HUB_KEY,
HF_GSK_HUB_PROJECT_KEY,
HF_GSK_HUB_UNLOCK_TOKEN,
HF_GSK_HUB_URL,
HF_REPO_ID,
HF_SPACE_ID,
HF_WRITE_TOKEN,
)
from io_utils import LOG_FILE, get_yaml_path, write_log_to_user_file
from isolated_env import prepare_venv
from leaderboard import LEADERBOARD
is_running = False
logger = logging.getLogger(__file__)
def start_process_run_job():
try:
logging.debug("Running jobs in thread")
global thread, is_running
thread = threading.Thread(target=run_job)
thread.daemon = True
is_running = True
thread.start()
except Exception as e:
print("Failed to start thread: ", e)
def stop_thread():
logging.debug("Stop thread")
global is_running
is_running = False
def prepare_env_and_get_command(
m_id,
d_id,
config,
split,
inference,
inference_token,
uid,
label_mapping,
feature_mapping,
):
leaderboard_dataset = None
if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
leaderboard_dataset = LEADERBOARD
inference_type = "hf_pipeline"
if inference and inference_token:
inference_type = "hf_inference_api"
executable = "giskard_scanner"
try:
# Copy the current requirements (might be changed)
with open("requirements.txt", "r") as f:
executable = prepare_venv(
uid,
"\n".join(f.readlines()),
)
logger.info(f"Using {executable} as executable")
except Exception as e:
logger.warn(f"Create env failed due to {e}, using the current env as fallback.")
executable = "giskard_scanner"
command = [
executable,
"--loader",
"huggingface",
"--model",
m_id,
"--dataset",
d_id,
"--dataset_config",
config,
"--dataset_split",
split,
"--output_format",
"markdown",
"--output_portal",
"huggingface",
"--feature_mapping",
json.dumps(feature_mapping),
"--label_mapping",
json.dumps(label_mapping),
"--scan_config",
get_yaml_path(uid),
"--inference_type",
inference_type,
"--inference_api_token",
inference_token,
]
# The token to publish post
if os.environ.get(HF_WRITE_TOKEN):
command.append("--hf_token")
command.append(os.environ.get(HF_WRITE_TOKEN))
# The repo to publish post
if os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID):
command.append("--discussion_repo")
# TODO: Replace by the model id
command.append(os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID))
# The repo to publish for ranking
if leaderboard_dataset:
command.append("--leaderboard_dataset")
command.append(leaderboard_dataset)
# The info to upload to Giskard hub
if os.environ.get(HF_GSK_HUB_KEY):
command.append("--giskard_hub_api_key")
command.append(os.environ.get(HF_GSK_HUB_KEY))
if os.environ.get(HF_GSK_HUB_URL):
command.append("--giskard_hub_url")
command.append(os.environ.get(HF_GSK_HUB_URL))
if os.environ.get(HF_GSK_HUB_PROJECT_KEY):
command.append("--giskard_hub_project_key")
command.append(os.environ.get(HF_GSK_HUB_PROJECT_KEY))
if os.environ.get(HF_GSK_HUB_HF_TOKEN):
command.append("--giskard_hub_hf_token")
command.append(os.environ.get(HF_GSK_HUB_HF_TOKEN))
if os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN):
command.append("--giskard_hub_unlock_token")
command.append(os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN))
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
write_log_to_user_file(
uid,
f"Start local evaluation on {eval_str}. Please wait for your job to start...\n",
)
return command
def save_job_to_pipe(task_id, job, description, lock):
with lock:
pipe.jobs.append((task_id, job, description))
def pop_job_from_pipe():
if len(pipe.jobs) == 0:
return
job_info = pipe.jobs.pop()
pipe.current = job_info[2]
task_id = job_info[0]
write_log_to_user_file(task_id, f"Running job id {task_id}\n")
command = prepare_env_and_get_command(*job_info[1])
# Link to LOG_FILE
log_file_path = Path(LOG_FILE)
if log_file_path.exists():
log_file_path.unlink()
os.symlink(f"./tmp/{task_id}.log", LOG_FILE)
with open(f"./tmp/{task_id}.log", "a") as log_file:
p = subprocess.Popen(command, stdout=log_file, stderr=subprocess.STDOUT)
p.wait()
pipe.current = None
def run_job():
global is_running
while is_running:
try:
pop_job_from_pipe()
time.sleep(10)
except KeyboardInterrupt:
logging.debug("KeyboardInterrupt stop background thread")
is_running = False
break
|