Spaces:
Running
Running
File size: 4,879 Bytes
be473e6 3573a39 58c39e0 61fc9c6 be473e6 8c47a22 3573a39 be473e6 3573a39 be473e6 3573a39 be473e6 3573a39 be473e6 4a85196 be473e6 3573a39 be473e6 3573a39 be473e6 4a85196 be473e6 3573a39 be473e6 8f809e2 be473e6 3573a39 be473e6 3573a39 be473e6 3573a39 6565530 947816c be473e6 3573a39 6565530 947816c be473e6 3573a39 6565530 3573a39 be473e6 3573a39 be473e6 8c47a22 be473e6 3573a39 be473e6 3573a39 be473e6 3573a39 4a85196 3573a39 58c39e0 3573a39 be473e6 3573a39 be473e6 3573a39 be473e6 8c47a22 be473e6 3573a39 be473e6 4a85196 58c39e0 4a85196 58c39e0 be473e6 3573a39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import logging
import datasets
import gradio as gr
from fetch_utils import (check_dataset_and_get_config,
check_dataset_and_get_split)
from text_classification_ui_helpers import LEADERBOARD
import leaderboard
def get_records_from_dataset_repo(dataset_id):
dataset_config = check_dataset_and_get_config(dataset_id)
logging.info(f"Dataset {dataset_id} has configs {dataset_config}")
dataset_split = check_dataset_and_get_split(dataset_id, dataset_config[0])
logging.info(f"Dataset {dataset_id} has splits {dataset_split}")
try:
ds = datasets.load_dataset(dataset_id, dataset_config[0])[dataset_split[0]]
df = ds.to_pandas()
return df
except Exception as e:
logging.warning(
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
)
return None
def get_model_ids(ds):
logging.info(f"Dataset {ds} column names: {ds['model_id']}")
models = ds["model_id"].tolist()
# return unique elements in the list model_ids
model_ids = list(set(models))
model_ids.insert(0, "Any")
return model_ids
def get_dataset_ids(ds):
logging.info(f"Dataset {ds} column names: {ds['dataset_id']}")
datasets = ds["dataset_id"].tolist()
dataset_ids = list(set(datasets))
dataset_ids.insert(0, "Any")
return dataset_ids
def get_types(ds):
# set types for each column
types = [str(t) for t in ds.dtypes.to_list()]
types = [t.replace("object", "markdown") for t in types]
types = [t.replace("float64", "number") for t in types]
types = [t.replace("int64", "number") for t in types]
return types
def get_display_df(df):
# style all elements in the model_id column
display_df = df.copy()
columns = display_df.columns.tolist()
if "model_id" in columns:
display_df["model_id"] = display_df["model_id"].apply(
lambda x: f'<a href="https://huggingface.co/{x}" target="_blank" style="color:blue">π{x}</a>'
)
# style all elements in the dataset_id column
if "dataset_id" in columns:
display_df["dataset_id"] = display_df["dataset_id"].apply(
lambda x: f'<a href="https://huggingface.co/datasets/{x}" target="_blank" style="color:blue">π{x}</a>'
)
# style all elements in the report_link column
if "report_link" in columns:
display_df["report_link"] = display_df["report_link"].apply(
lambda x: f'<a href="{x}" target="_blank" style="color:blue">π{x}</a>'
)
return display_df
def get_demo():
leaderboard.records = get_records_from_dataset_repo(LEADERBOARD)
records = leaderboard.records
model_ids = get_model_ids(records)
dataset_ids = get_dataset_ids(records)
column_names = records.columns.tolist()
default_columns = ["model_id", "dataset_id", "total_issues", "report_link"]
default_df = records[default_columns] # extract columns selected
types = get_types(default_df)
display_df = get_display_df(default_df) # the styled dataframe to display
with gr.Row():
task_select = gr.Dropdown(
label="Task",
choices=["text_classification", "tabular"],
value="text_classification",
interactive=True,
)
model_select = gr.Dropdown(
label="Model id", choices=model_ids, value=model_ids[0], interactive=True
)
dataset_select = gr.Dropdown(
label="Dataset id",
choices=dataset_ids,
value=dataset_ids[0],
interactive=True,
)
with gr.Row():
columns_select = gr.CheckboxGroup(
label="Show columns",
choices=column_names,
value=default_columns,
interactive=True,
)
with gr.Row():
leaderboard_df = gr.DataFrame(display_df, datatype=types, interactive=False)
@gr.on(
triggers=[
model_select.change,
dataset_select.change,
columns_select.change,
task_select.change,
],
inputs=[model_select, dataset_select, columns_select, task_select],
outputs=[leaderboard_df],
)
def filter_table(model_id, dataset_id, columns, task):
records = leaderboard.records
# filter the table based on task
df = records[(records["task"] == task)]
# filter the table based on the model_id and dataset_id
if model_id and model_id != "Any":
df = df[(df["model_id"] == model_id)]
if dataset_id and dataset_id != "Any":
df = df[(df["dataset_id"] == dataset_id)]
# filter the table based on the columns
df = df[columns]
types = get_types(df)
display_df = get_display_df(df)
return gr.update(value=display_df, datatype=types, interactive=False)
|