File size: 4,261 Bytes
d6b3b9f
01942d8
88f768f
d6b3b9f
 
 
 
 
 
88f768f
 
 
 
 
 
 
 
 
 
 
 
 
 
01942d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88f768f
 
 
 
 
 
 
 
 
 
01942d8
 
 
 
 
88f768f
01942d8
 
88f768f
01942d8
 
 
 
 
d6b3b9f
 
 
 
 
 
 
 
88f768f
d6b3b9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01942d8
d6b3b9f
01942d8
 
 
 
 
d6b3b9f
 
01942d8
d6b3b9f
01942d8
 
 
 
 
d6b3b9f
 
01942d8
88f768f
01942d8
 
 
88f768f
01942d8
 
 
 
 
 
 
 
 
 
d6b3b9f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import datasets
import huggingface_hub


theme = gr.themes.Soft(
    primary_hue="green",
)

def check_model(model_id):
    try:
        task = huggingface_hub.model_info(model_id).pipeline_tag
    except Exception:
        return None, None

    try:
        from transformers import pipeline
        ppl = pipeline(task=task, model=model_id)
        
        return model_id, ppl
    except Exception as e:
        return model_id, e


def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
    try:
        configs = datasets.get_dataset_config_names(dataset_id)
    except Exception:
        # Dataset may not exist
        return None, dataset_config, dataset_split

    if dataset_config not in configs:
        # Need to choose dataset subset (config)
        return dataset_id, configs, dataset_split

    ds = datasets.load_dataset(dataset_id, dataset_config)

    if isinstance(ds, datasets.DatasetDict):
        # Need to choose dataset split
        if dataset_split not in ds.keys():
            return dataset_id, None, list(ds.keys())
    elif not isinstance(ds, datasets.Dataset):
        # Unknown type
        return dataset_id, None, None
    return dataset_id, dataset_config, dataset_split


def try_submit(model_id, dataset_id, dataset_config, dataset_split):
    # Validate model
    m_id, ppl = check_model(model_id=model_id)
    if m_id is None:
        gr.Warning(f'Model "{model_id}" is not accessible. Please set your HF_TOKEN if it is a private model.')
        return dataset_config, dataset_split
    if isinstance(ppl, Exception):
        gr.Warning(f'Failed to load "{model_id} model": {ppl}')
        return dataset_config, dataset_split

    # Validate dataset
    d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split)

    if d_id is None:
        gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.')
    elif isinstance(config, list):
        gr.Warning(f'Dataset "{dataset_id}" does have "{dataset_config}" config. Please choose a valid config.')
        config = gr.Dropdown.update(choices=config, value=config[0])
    elif isinstance(split, list):
        gr.Warning(f'Dataset "{dataset_id}" does have "{dataset_split}" split. Please choose a valid split.')
        split = gr.Dropdown.update(choices=split, value=split[0])

    return config, split

with gr.Blocks(theme=theme) as iface:
    with gr.Row():
        with gr.Column():
            model_id_input = gr.Textbox(
                label="Hugging Face model id",
                placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest",
            )

            # TODO: Add supported model pairs: Text Classification - text-classification
            model_type = gr.Dropdown(
                label="Hugging Face model type",
                choices=[
                    ("Auto-detect", 0),
                    ("Text Classification", 1),
                ],
                value=0,
            )

        with gr.Column():
            dataset_id_input = gr.Textbox(
                label="Hugging Face dataset id",
                placeholder="tweet_eval",
            )

            dataset_config_input = gr.Dropdown(
                label="Hugging Face dataset subset",
                choices=[
                    "default",
                ],
                allow_custom_value=True,
                value="default",
            )

            dataset_split_input = gr.Dropdown(
                label="Hugging Face dataset split",
                choices=[
                    "test",
                ],
                allow_custom_value=True,
                value="test",
            )

    with gr.Row():
        run_btn = gr.Button("Validate and submit evaluation task", variant="primary")
        run_btn.click(
            try_submit,
            inputs=[
                model_id_input,
                dataset_id_input,
                dataset_config_input,
                dataset_split_input
            ],
            outputs=[
                dataset_config_input,
                dataset_split_input
            ],
        )

iface.queue(max_size=20)
iface.launch()