Spaces:
Running
Running
File size: 7,066 Bytes
8f809e2 58c39e0 9e4233f 3573a39 9e4233f 8f809e2 9e4233f be473e6 136af2d 8092547 136af2d 9e4233f 3573a39 9e4233f 3573a39 9e4233f 3573a39 9e4233f 3573a39 9e4233f 3573a39 be473e6 3573a39 be473e6 3573a39 9e4233f 8092547 58c39e0 8092547 58c39e0 8092547 3573a39 58c39e0 3573a39 58c39e0 8092547 58c39e0 9e4233f 3573a39 8f809e2 9ca668d 3573a39 136af2d 58c39e0 136af2d 1c00552 58c39e0 1c00552 58c39e0 1c00552 58c39e0 3573a39 8f809e2 3573a39 136af2d 3573a39 9e4233f 1c00552 3573a39 136af2d 3573a39 8f809e2 3573a39 9e4233f 3573a39 9e4233f 8f809e2 3573a39 8f809e2 3573a39 8f809e2 3573a39 8f809e2 3573a39 8f809e2 3573a39 8f809e2 3573a39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import uuid
import gradio as gr
from io_utils import (get_logs_file, read_inference_type, read_scanners,
write_inference_type, write_scanners)
from text_classification_ui_helpers import (check_dataset_and_get_config,
check_dataset_and_get_split,
check_model_and_show_prediction,
deselect_run_inference,
select_run_mode, try_submit,
write_column_mapping_to_config)
from wordings import CONFIRM_MAPPING_DETAILS_MD, INTRODUCTION_MD
MAX_LABELS = 20
MAX_FEATURES = 20
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
EXAMPLE_DATA_ID = "tweet_eval"
CONFIG_PATH = "./config.yaml"
def get_demo(demo):
with gr.Row():
gr.Markdown(INTRODUCTION_MD)
uid_label = gr.Textbox(
label="Evaluation ID:", value=uuid.uuid4, visible=False, interactive=False
)
with gr.Row():
model_id_input = gr.Textbox(
label="Hugging Face model id",
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
)
dataset_id_input = gr.Textbox(
label="Hugging Face Dataset id",
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
)
with gr.Row():
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
with gr.Row():
example_input = gr.Markdown("Example Input", visible=False)
with gr.Row():
example_prediction = gr.Label(label="Model Prediction Sample", visible=False)
with gr.Row():
with gr.Accordion(
label="Label and Feature Mapping", visible=False, open=False
) as column_mapping_accordion:
with gr.Row():
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
column_mappings = []
with gr.Row():
with gr.Column():
for _ in range(MAX_LABELS):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Column():
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
run_local = gr.Checkbox(value=True, label="Run in this Space")
run_inference = gr.Checkbox(value="False", label="Run with Inference API")
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[run_inference])
def get_run_mode(uid):
return gr.update(
value=read_inference_type(uid) == "hf_inference_api"
and not run_local.value
)
inference_token = gr.Textbox(
value="",
label="HF Token for Inference API",
visible=False,
interactive=True,
)
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
scanners = gr.CheckboxGroup(label="Scan Settings", visible=True)
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[scanners])
def get_scanners(uid):
selected = read_scanners(uid)
# currently we remove data_leakage from the default scanners
# Reason: data_leakage barely raises any issues and takes too many requests
# when using inference API, causing rate limit error
scan_config = selected + ["data_leakage"]
return gr.update(
choices=scan_config, value=selected, label="Scan Settings", visible=True
)
with gr.Row():
run_btn = gr.Button(
"Get Evaluation Result",
variant="primary",
interactive=True,
size="lg",
)
with gr.Row():
logs = gr.Textbox(label="Giskard Bot Evaluation Log:", visible=False)
demo.load(get_logs_file, None, logs, every=0.5)
dataset_id_input.change(
check_dataset_and_get_config,
inputs=[dataset_id_input],
outputs=[dataset_config_input],
)
dataset_config_input.change(
check_dataset_and_get_split,
inputs=[dataset_id_input, dataset_config_input],
outputs=[dataset_split_input],
)
scanners.change(write_scanners, inputs=[scanners, uid_label])
run_inference.change(
select_run_mode,
inputs=[run_inference, inference_token, uid_label],
outputs=[inference_token, run_local],
)
run_local.change(
deselect_run_inference,
inputs=[run_local],
outputs=[inference_token, run_inference],
)
inference_token.change(
write_inference_type, inputs=[run_inference, inference_token, uid_label]
)
gr.on(
triggers=[label.change for label in column_mappings],
fn=write_column_mapping_to_config,
inputs=[
dataset_id_input,
dataset_config_input,
dataset_split_input,
uid_label,
*column_mappings,
],
)
# label.change sometimes does not pass the changed value
gr.on(
triggers=[label.input for label in column_mappings],
fn=write_column_mapping_to_config,
inputs=[
dataset_id_input,
dataset_config_input,
dataset_split_input,
uid_label,
*column_mappings,
],
)
gr.on(
triggers=[
model_id_input.change,
dataset_id_input.change,
dataset_config_input.change,
dataset_split_input.change,
],
fn=check_model_and_show_prediction,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
],
outputs=[
example_input,
example_prediction,
column_mapping_accordion,
*column_mappings,
],
)
gr.on(
triggers=[
run_btn.click,
],
fn=try_submit,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
run_local,
uid_label,
],
outputs=[run_btn, logs],
)
def enable_run_btn():
return gr.update(interactive=True)
gr.on(
triggers=[
model_id_input.change,
dataset_config_input.change,
dataset_split_input.change,
run_inference.change,
run_local.change,
scanners.change,
],
fn=enable_run_btn,
inputs=None,
outputs=[run_btn],
)
gr.on(
triggers=[label.change for label in column_mappings],
fn=enable_run_btn,
inputs=None,
outputs=[run_btn],
)
|