Spaces:
Running
Running
File size: 3,615 Bytes
3a0ee14 f04482d 3a0ee14 f04482d 3a0ee14 9e4233f 3a0ee14 be473e6 3a0ee14 be473e6 3a0ee14 9e4233f 3a0ee14 be473e6 3a0ee14 be473e6 3a0ee14 9e4233f f04482d 9e4233f 3a0ee14 9e4233f f04482d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import yaml
import subprocess
import os
YAML_PATH = "./config.yaml"
PIPE_PATH = "./tmp/pipe"
class Dumper(yaml.Dumper):
def increase_indent(self, flow=False, *args, **kwargs):
return super().increase_indent(flow=flow, indentless=False)
# read scanners from yaml file
# return a list of scanners
def read_scanners(path):
scanners = []
with open(path, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
scanners = config.get("detectors", [])
return scanners
# convert a list of scanners to yaml file
def write_scanners(scanners):
print(scanners)
with open(YAML_PATH, "r+") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if config:
config["detectors"] = scanners
# save scanners to detectors in yaml
yaml.dump(config, f, Dumper=Dumper)
# read model_type from yaml file
def read_inference_type(path):
inference_type = ""
with open(path, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
inference_type = config.get("inference_type", "")
return inference_type
# write model_type to yaml file
def write_inference_type(use_inference):
with open(YAML_PATH, "r+") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if use_inference:
config["inference_type"] = 'hf_inference_api'
else:
config["inference_type"] = 'hf_pipeline'
# save inference_type to inference_type in yaml
yaml.dump(config, f, Dumper=Dumper)
# read column mapping from yaml file
def read_column_mapping(path):
column_mapping = {}
with open(path, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
column_mapping = config.get("column_mapping", dict())
return column_mapping
# write column mapping to yaml file
def write_column_mapping(mapping):
with open(YAML_PATH, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if config is None:
return
if mapping is None and "column_mapping" in config.keys():
del config["column_mapping"]
else:
config["column_mapping"] = mapping
with open(YAML_PATH, "w") as f:
# save column_mapping to column_mapping in yaml
yaml.dump(config, f, Dumper=Dumper)
# convert column mapping dataframe to json
def convert_column_mapping_to_json(df, label=""):
column_mapping = {}
column_mapping[label] = []
for _, row in df.iterrows():
column_mapping[label].append(row.tolist())
return column_mapping
def write_log_to_user_file(id, log):
with open(f"./tmp/{id}_log", "a") as f:
f.write(log)
def save_job_to_pipe(id, job, lock):
if not os.path.exists('./tmp'):
os.makedirs('./tmp')
job = [str(i) for i in job]
job = ",".join(job)
print(job)
with lock:
with open(PIPE_PATH, "a") as f:
# write each element in job
f.write(f'{id}@{job}\n')
def pop_job_from_pipe():
if not os.path.exists(PIPE_PATH):
return
with open(PIPE_PATH, "r+") as f:
jobs = f.readlines()
f.write("\n".join(jobs[1:]))
f.close()
if len(jobs) == 0:
return
job_info = jobs[0].split('\n')[0].split("@")
if len(job_info) != 2:
raise ValueError("Invalid job info: ", job_info)
print(f"Running job {job_info}")
command = job_info[1].split(",")
print(command)
log_file = open(f"./tmp/{job_info[0]}_log", "w")
subprocess.Popen(
command,
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
stdout=log_file,
stderr=log_file,
)
|