Spaces:
Running
Running
File size: 5,466 Bytes
9e4233f 8f809e2 3573a39 8f809e2 3573a39 9e4233f 3573a39 9e4233f 8f809e2 9e4233f be473e6 9e4233f 3573a39 9e4233f 3573a39 9e4233f 3573a39 9e4233f 3573a39 9e4233f 3573a39 be473e6 3573a39 be473e6 3573a39 9e4233f 3573a39 9e4233f 3573a39 8f809e2 3573a39 9e4233f 3573a39 8f809e2 3573a39 8f809e2 3573a39 8f809e2 3573a39 9e4233f 3573a39 8f809e2 3573a39 9e4233f 3573a39 9e4233f 3573a39 be473e6 3573a39 be473e6 9e4233f 3573a39 9e4233f 8f809e2 3573a39 8f809e2 3573a39 8f809e2 3573a39 8f809e2 3573a39 8f809e2 3573a39 8f809e2 3573a39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gradio as gr
import uuid
from io_utils import (
read_scanners,
write_scanners,
read_inference_type,
write_inference_type,
get_logs_file,
)
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD
from text_classification_ui_helpers import (
try_submit,
check_dataset_and_get_config,
check_dataset_and_get_split,
check_model_and_show_prediction,
write_column_mapping_to_config,
)
MAX_LABELS = 20
MAX_FEATURES = 20
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
EXAMPLE_DATA_ID = "tweet_eval"
CONFIG_PATH = "./config.yaml"
def get_demo(demo):
with gr.Row():
gr.Markdown(INTRODUCTION_MD)
with gr.Row():
model_id_input = gr.Textbox(
label="Hugging Face model id",
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
)
dataset_id_input = gr.Textbox(
label="Hugging Face Dataset id",
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
)
with gr.Row():
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
with gr.Row():
example_input = gr.Markdown("Example Input", visible=False)
with gr.Row():
example_prediction = gr.Label(label="Model Prediction Sample", visible=False)
with gr.Row():
with gr.Accordion(
label="Label and Feature Mapping", visible=False, open=False
) as column_mapping_accordion:
with gr.Row():
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
column_mappings = []
with gr.Row():
with gr.Column():
for _ in range(MAX_LABELS):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Column():
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
run_local = gr.Checkbox(value=True, label="Run in this Space")
use_inference = read_inference_type(CONFIG_PATH) == "hf_inference_api"
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
selected = read_scanners(CONFIG_PATH)
# currently we remove data_leakage from the default scanners
# Reason: data_leakage barely raises any issues and takes too many requests
# when using inference API, causing rate limit error
scan_config = selected + ["data_leakage"]
scanners = gr.CheckboxGroup(
choices=scan_config, value=selected, label="Scan Settings", visible=True
)
with gr.Row():
run_btn = gr.Button(
"Get Evaluation Result",
variant="primary",
interactive=True,
size="lg",
)
with gr.Row():
uid = uuid.uuid4()
uid_label = gr.Textbox(
label="Evaluation ID:", value=uid, visible=False, interactive=False
)
logs = gr.Textbox(label="Giskard Bot Evaluation Log:", visible=False)
demo.load(get_logs_file, uid_label, logs, every=0.5)
gr.on(
triggers=[label.change for label in column_mappings],
fn=write_column_mapping_to_config,
inputs=[
dataset_id_input,
dataset_config_input,
dataset_split_input,
*column_mappings,
],
)
gr.on(
triggers=[
model_id_input.change,
dataset_config_input.change,
dataset_split_input.change,
],
fn=check_model_and_show_prediction,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
],
outputs=[
example_input,
example_prediction,
column_mapping_accordion,
*column_mappings,
],
)
dataset_id_input.blur(
check_dataset_and_get_config, dataset_id_input, dataset_config_input
)
dataset_config_input.change(
check_dataset_and_get_split,
inputs=[dataset_id_input, dataset_config_input],
outputs=[dataset_split_input],
)
scanners.change(write_scanners, inputs=scanners)
run_inference.change(write_inference_type, inputs=[run_inference])
gr.on(
triggers=[
run_btn.click,
],
fn=try_submit,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
run_local,
uid_label,
],
outputs=[run_btn, logs],
)
def enable_run_btn():
return gr.update(interactive=True)
gr.on(
triggers=[
model_id_input.change,
dataset_config_input.change,
dataset_split_input.change,
run_inference.change,
run_local.change,
scanners.change,
],
fn=enable_run_btn,
inputs=None,
outputs=[run_btn],
)
gr.on(
triggers=[label.change for label in column_mappings],
fn=enable_run_btn,
inputs=None,
outputs=[run_btn],
)
|