File size: 10,943 Bytes
9e4233f
 
 
 
 
 
5058ff3
9e4233f
 
 
 
 
cbb886a
 
80ed307
9e4233f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ed307
9e4233f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ed307
 
 
 
 
 
 
 
 
 
 
9e4233f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba41a5c
9e4233f
 
 
ba41a5c
 
9e4233f
 
 
 
 
 
 
 
 
80ed307
9e4233f
 
 
 
 
 
 
 
 
ba41a5c
 
 
5058ff3
9e4233f
 
 
 
80ed307
ba41a5c
 
 
 
 
5058ff3
 
ba41a5c
 
 
 
 
 
 
 
 
 
 
 
 
5058ff3
 
 
 
ba41a5c
 
 
 
 
9e4233f
 
ba41a5c
9e4233f
 
 
 
5058ff3
9e4233f
 
 
 
 
 
 
 
 
cbb886a
80ed307
 
 
 
 
cbb886a
 
 
 
80ed307
9e4233f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import gradio as gr
import datasets
import os
import time
import subprocess
import logging
import collections

import json

from transformers.pipelines import TextClassificationPipeline

from text_classification import get_labels_and_features_from_dataset, check_model, get_example_prediction
from io_utils import read_scanners, write_scanners, read_inference_type, read_column_mapping, write_column_mapping, write_inference_type
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD, CONFIRM_MAPPING_DETAILS_FAIL_RAW

HF_REPO_ID = 'HF_REPO_ID'
HF_SPACE_ID = 'SPACE_ID'
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'

MAX_LABELS = 20
MAX_FEATURES = 20

EXAMPLE_MODEL_ID = 'cardiffnlp/twitter-roberta-base-sentiment-latest'
EXAMPLE_DATA_ID = 'tweet_eval'
CONFIG_PATH='./config.yaml'

def try_submit(m_id, d_id, config, split, local):
    all_mappings = read_column_mapping(CONFIG_PATH)

    if "labels" not in all_mappings.keys():
        gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
        return gr.update(interactive=True)
    label_mapping = all_mappings["labels"]
    
    if "features" not in all_mappings.keys():
        gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
        return gr.update(interactive=True)
    feature_mapping = all_mappings["features"]

    # TODO: Set column mapping for some dataset such as `amazon_polarity`
    if local:
        command = [
            "python",
            "cli.py",
            "--loader", "huggingface",
            "--model", m_id,
            "--dataset", d_id,
            "--dataset_config", config,
            "--dataset_split", split,
            "--hf_token", os.environ.get(HF_WRITE_TOKEN),
            "--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
            "--output_format", "markdown",
            "--output_portal", "huggingface",
            "--feature_mapping", json.dumps(feature_mapping),
            "--label_mapping", json.dumps(label_mapping),
            "--scan_config", "../config.yaml",
        ]

        eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
        start = time.time()
        logging.info(f"Start local evaluation on {eval_str}")

        evaluator = subprocess.Popen(
            command,
            cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
            stderr=subprocess.STDOUT,
        )
        result = evaluator.wait()

        logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")

        gr.Info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
    else:
        gr.Info("TODO: Submit task to an endpoint")
    
    return gr.update(interactive=True)  # Submit button


def check_dataset_and_get_config(dataset_id):
    try:
        configs = datasets.get_dataset_config_names(dataset_id)
        return gr.Dropdown(configs, value=configs[0], visible=True)
    except Exception:
        # Dataset may not exist
        pass

def check_dataset_and_get_split(dataset_id, dataset_config):
    try:
        splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
        return gr.Dropdown(splits, value=splits[0], visible=True)
    except Exception:
        # Dataset may not exist
        # gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
        pass

def get_demo():
    with gr.Row():
        gr.Markdown(INTRODUCTION_MD)
    with gr.Row():
        model_id_input = gr.Textbox(
            label="Hugging Face model id",
            placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
        )

        dataset_id_input = gr.Textbox(
            label="Hugging Face Dataset id",
            placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
        )
    
    with gr.Row():
        dataset_config_input = gr.Dropdown(label='Dataset Config', visible=False)
        dataset_split_input = gr.Dropdown(label='Dataset Split', visible=False)
    
    with gr.Row():
        example_input = gr.Markdown('Example Input', visible=False)
    with gr.Row():
        example_prediction = gr.Label(label='Model Prediction Sample', visible=False)
    
    with gr.Row():
        with gr.Accordion(label='Label and Feature Mapping', visible=False, open=False) as column_mapping_accordion:
            with gr.Row():
                gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
            column_mappings = []
            with gr.Row():
                with gr.Column():
                    for _ in range(MAX_LABELS):
                        column_mappings.append(gr.Dropdown(visible=False))
                with gr.Column():    
                    for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
                        column_mappings.append(gr.Dropdown(visible=False))
    
    with gr.Accordion(label='Model Wrap Advance Config (optional)', open=False):
        run_local = gr.Checkbox(value=True, label="Run in this Space")
        use_inference = read_inference_type('./config.yaml') == 'hf_inference_api'
        run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
    
    with gr.Accordion(label='Scanner Advance Config (optional)', open=False):
        selected = read_scanners('./config.yaml')
        scan_config = selected + ['data_leakage']
        scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)

    with gr.Row():
        run_btn = gr.Button(
            "Get Evaluation Result",
            variant="primary",
            interactive=True,
            size="lg",
        )
        
    @gr.on(triggers=[label.change for label in column_mappings], 
           inputs=[dataset_id_input, dataset_config_input, dataset_split_input, *column_mappings])
    def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *labels):
        ds_labels, ds_features = get_labels_and_features_from_dataset(dataset_id, dataset_config, dataset_split)
        if labels is None:
            return
        labels = [*labels]
        all_mappings = read_column_mapping(CONFIG_PATH)

        if "labels" not in all_mappings.keys():
            all_mappings["labels"] = dict()
        for i, label in enumerate(labels[:MAX_LABELS]):
            if label:
                all_mappings["labels"][label] = ds_labels[i]

        if "features" not in all_mappings.keys():
            all_mappings["features"] = dict()
        for i, feat in enumerate(labels[MAX_LABELS:(MAX_LABELS + MAX_FEATURES)]):
            if feat:
                all_mappings["features"][feat] = ds_features[i]
        write_column_mapping(all_mappings)

    def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label):
        model_labels = list(model_id2label.values())
        lables = [gr.Dropdown(label=f"{label}", choices=model_labels, value=model_id2label[i], interactive=True, visible=True) for i, label in enumerate(ds_labels[:MAX_LABELS])]
        lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
        # TODO: Substitute 'text' with more features for zero-shot
        features = [gr.Dropdown(label=f"{feature}", choices=ds_features, value=ds_features[0], interactive=True, visible=True) for feature in ['text']]
        features += [gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))]
        return lables + features
    
    @gr.on(triggers=[model_id_input.change, dataset_config_input.change])
    def clear_column_mapping_config():
        write_column_mapping(None)
    
    @gr.on(triggers=[model_id_input.change, dataset_config_input.change, dataset_split_input.change],
        inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input], 
        outputs=[example_input, example_prediction, column_mapping_accordion, *column_mappings])
    def check_model_and_show_prediction(model_id, dataset_id, dataset_config, dataset_split):
        ppl = check_model(model_id)
        if ppl is None or not isinstance(ppl, TextClassificationPipeline):
            gr.Warning("Please check your model.")
            return (
                gr.update(visible=False),
                gr.update(visible=False),
                *[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)]
            )
        
        dropdown_placement = [gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)]
            
        if ppl is None: # pipeline not found
            gr.Warning("Model not found")
            return (
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False, open=False),
                *dropdown_placement
            )
        model_id2label = ppl.model.config.id2label
        ds_labels, ds_features = get_labels_and_features_from_dataset(dataset_id, dataset_config, dataset_split)
        
        # when dataset does not have labels or features
        if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
            gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
            return (
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False, open=False),
                *dropdown_placement
            )
        
        column_mappings = list_labels_and_features_from_dataset(
            ds_labels,
            ds_features,
            model_id2label,
        )

        # when labels or features are not aligned
        # show manually column mapping
        if collections.Counter(model_id2label.items()) != collections.Counter(ds_labels) or ds_features[0] != 'text':
            gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
            return (
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=True, open=True),
                *column_mappings
            )

        prediction_input, prediction_output = get_example_prediction(ppl, dataset_id, dataset_config, dataset_split)
        return (
            gr.update(value=prediction_input, visible=True),
            gr.update(value=prediction_output, visible=True),
            gr.update(visible=True, open=False),
            *column_mappings
        )

    dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)

    dataset_config_input.change(
        check_dataset_and_get_split, 
        inputs=[dataset_id_input, dataset_config_input], 
        outputs=[dataset_split_input])

    scanners.change(
        write_scanners,
        inputs=scanners
    )

    run_inference.change(
        write_inference_type,
        inputs=[run_inference]
    )

    gr.on(
        triggers=[
            run_btn.click,
            ],
        fn=try_submit,
        inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, run_local],
        outputs=[run_btn])