File size: 4,022 Bytes
8f809e2
3573a39
 
 
3a0ee14
 
8f809e2
3a0ee14
3573a39
3a0ee14
 
 
3573a39
 
3a0ee14
 
 
 
 
 
9e4233f
3a0ee14
 
3573a39
3a0ee14
 
be473e6
 
3a0ee14
be473e6
 
 
 
3a0ee14
3573a39
3a0ee14
 
 
 
 
9e4233f
3a0ee14
 
3573a39
3a0ee14
 
be473e6
3a0ee14
 
3573a39
3a0ee14
3573a39
be473e6
 
3a0ee14
3573a39
9e4233f
 
 
 
 
8f809e2
 
9e4233f
 
3573a39
9e4233f
 
 
 
8f809e2
 
 
9e4233f
 
 
 
 
 
 
3573a39
3a0ee14
 
 
 
 
 
9e4233f
8f809e2
3573a39
8f809e2
 
 
 
 
 
 
3573a39
8f809e2
 
 
 
3573a39
8f809e2
3573a39
 
8f809e2
 
 
 
 
 
3573a39
 
8f809e2
 
 
 
 
 
 
 
 
 
 
 
 
 
3573a39
8f809e2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import subprocess

import yaml

YAML_PATH = "./config.yaml"
PIPE_PATH = "./tmp/pipe"


class Dumper(yaml.Dumper):
    def increase_indent(self, flow=False, *args, **kwargs):
        return super().increase_indent(flow=flow, indentless=False)


# read scanners from yaml file
# return a list of scanners
def read_scanners(path):
    scanners = []
    with open(path, "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        scanners = config.get("detectors", [])
    return scanners


# convert a list of scanners to yaml file
def write_scanners(scanners):
    print(scanners)
    with open(YAML_PATH, "r+") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        if config:
            config["detectors"] = scanners
            # save scanners to detectors in yaml
            yaml.dump(config, f, Dumper=Dumper)


# read model_type from yaml file
def read_inference_type(path):
    inference_type = ""
    with open(path, "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        inference_type = config.get("inference_type", "")
    return inference_type


# write model_type to yaml file
def write_inference_type(use_inference):
    with open(YAML_PATH, "r+") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    if use_inference:
        config["inference_type"] = "hf_inference_api"
    else:
        config["inference_type"] = "hf_pipeline"
    # save inference_type to inference_type in yaml
    yaml.dump(config, f, Dumper=Dumper)


# read column mapping from yaml file
def read_column_mapping(path):
    column_mapping = {}
    with open(path, "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        if config:
            column_mapping = config.get("column_mapping", dict())
    return column_mapping


# write column mapping to yaml file
def write_column_mapping(mapping):
    with open(YAML_PATH, "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    if config is None:
        return
    if mapping is None and "column_mapping" in config.keys():
        del config["column_mapping"]
    else:
        config["column_mapping"] = mapping
    with open(YAML_PATH, "w") as f:
        # save column_mapping to column_mapping in yaml
        yaml.dump(config, f, Dumper=Dumper)


# convert column mapping dataframe to json
def convert_column_mapping_to_json(df, label=""):
    column_mapping = {}
    column_mapping[label] = []
    for _, row in df.iterrows():
        column_mapping[label].append(row.tolist())
    return column_mapping


def get_logs_file(uid):
    try:
        file = open(f"./tmp/{uid}_log", "r")
        return file.read()
    except Exception:
        return "Log file does not exist"


def write_log_to_user_file(id, log):
    with open(f"./tmp/{id}_log", "a") as f:
        f.write(log)


def save_job_to_pipe(id, job, lock):
    if not os.path.exists("./tmp"):
        os.makedirs("./tmp")
    job = [str(i) for i in job]
    job = ",".join(job)
    print(job)
    with lock:
        with open(PIPE_PATH, "a") as f:
            # write each element in job
            f.write(f"{id}@{job}\n")


def pop_job_from_pipe():
    if not os.path.exists(PIPE_PATH):
        return
    with open(PIPE_PATH, "r") as f:
        job = f.readline().strip()
        remaining = f.readlines()
        f.close()
    print(job, remaining, ">>>>")
    with open(PIPE_PATH, "w") as f:
        f.write("\n".join(remaining))
        f.close()
    if len(job) == 0:
        return
    job_info = job.split("\n")[0].split("@")
    if len(job_info) != 2:
        raise ValueError("Invalid job info: ", job_info)

    write_log_to_user_file(job_info[0], f"Running job {job_info}")
    command = job_info[1].split(",")

    write_log_to_user_file(job_info[0], f"Running command {command}")
    log_file = open(f"./tmp/{job_info[0]}_log", "a")
    subprocess.Popen(
        command,
        cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
        stdout=log_file,
        stderr=log_file,
    )