Spaces:
Running
Running
import gradio as gr | |
import uuid | |
from io_utils import ( | |
read_scanners, | |
write_scanners, | |
read_inference_type, | |
write_inference_type, | |
get_logs_file, | |
) | |
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD | |
from text_classification_ui_helpers import ( | |
try_submit, | |
check_dataset_and_get_config, | |
check_dataset_and_get_split, | |
check_model_and_show_prediction, | |
write_column_mapping_to_config, | |
) | |
MAX_LABELS = 20 | |
MAX_FEATURES = 20 | |
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest" | |
EXAMPLE_DATA_ID = "tweet_eval" | |
CONFIG_PATH = "./config.yaml" | |
def get_demo(demo): | |
uid = uuid.uuid4() | |
with gr.Row(): | |
gr.Markdown(INTRODUCTION_MD) | |
uid_label = gr.Textbox( | |
label="Evaluation ID:", value=uid, visible=False, interactive=False | |
) | |
with gr.Row(): | |
model_id_input = gr.Textbox( | |
label="Hugging Face model id", | |
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)", | |
) | |
dataset_id_input = gr.Textbox( | |
label="Hugging Face Dataset id", | |
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)", | |
) | |
with gr.Row(): | |
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False) | |
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False) | |
with gr.Row(): | |
example_input = gr.Markdown("Example Input", visible=False) | |
with gr.Row(): | |
example_prediction = gr.Label(label="Model Prediction Sample", visible=False) | |
with gr.Row(): | |
with gr.Accordion( | |
label="Label and Feature Mapping", visible=False, open=False | |
) as column_mapping_accordion: | |
with gr.Row(): | |
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD) | |
column_mappings = [] | |
with gr.Row(): | |
with gr.Column(): | |
for _ in range(MAX_LABELS): | |
column_mappings.append(gr.Dropdown(visible=False)) | |
with gr.Column(): | |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES): | |
column_mappings.append(gr.Dropdown(visible=False)) | |
with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False): | |
run_local = gr.Checkbox(value=True, label="Run in this Space") | |
use_inference = read_inference_type(uid) == "hf_inference_api" | |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API") | |
with gr.Accordion(label="Scanner Advance Config (optional)", open=False): | |
selected = read_scanners(uid) | |
# currently we remove data_leakage from the default scanners | |
# Reason: data_leakage barely raises any issues and takes too many requests | |
# when using inference API, causing rate limit error | |
scan_config = selected + ["data_leakage"] | |
scanners = gr.CheckboxGroup( | |
choices=scan_config, value=selected, label="Scan Settings", visible=True | |
) | |
with gr.Row(): | |
run_btn = gr.Button( | |
"Get Evaluation Result", | |
variant="primary", | |
interactive=True, | |
size="lg", | |
) | |
with gr.Row(): | |
logs = gr.Textbox(label="Giskard Bot Evaluation Log:", visible=False) | |
demo.load(get_logs_file, uid_label, logs, every=0.5) | |
dataset_id_input.change( | |
check_dataset_and_get_config, inputs=[dataset_id_input, uid_label], outputs=[dataset_config_input] | |
) | |
dataset_config_input.change( | |
check_dataset_and_get_split, | |
inputs=[dataset_id_input, dataset_config_input], | |
outputs=[dataset_split_input], | |
) | |
scanners.change(write_scanners, inputs=[scanners, uid_label]) | |
run_inference.change(write_inference_type, inputs=[run_inference, uid_label]) | |
gr.on( | |
triggers=[label.change for label in column_mappings], | |
fn=write_column_mapping_to_config, | |
inputs=[ | |
dataset_id_input, | |
dataset_config_input, | |
dataset_split_input, | |
uid_label, | |
*column_mappings, | |
], | |
) | |
# label.change sometimes does not pass the changed value | |
gr.on( | |
triggers=[label.input for label in column_mappings], | |
fn=write_column_mapping_to_config, | |
inputs=[ | |
dataset_id_input, | |
dataset_config_input, | |
dataset_split_input, | |
uid_label, | |
*column_mappings, | |
], | |
) | |
gr.on( | |
triggers=[ | |
model_id_input.change, | |
dataset_id_input.change, | |
dataset_config_input.change, | |
dataset_split_input.change, | |
], | |
fn=check_model_and_show_prediction, | |
inputs=[ | |
model_id_input, | |
dataset_id_input, | |
dataset_config_input, | |
dataset_split_input, | |
], | |
outputs=[ | |
example_input, | |
example_prediction, | |
column_mapping_accordion, | |
*column_mappings, | |
], | |
) | |
gr.on( | |
triggers=[ | |
run_btn.click, | |
], | |
fn=try_submit, | |
inputs=[ | |
model_id_input, | |
dataset_id_input, | |
dataset_config_input, | |
dataset_split_input, | |
run_local, | |
uid_label, | |
], | |
outputs=[run_btn, logs], | |
) | |
def enable_run_btn(): | |
return gr.update(interactive=True) | |
gr.on( | |
triggers=[ | |
model_id_input.change, | |
dataset_config_input.change, | |
dataset_split_input.change, | |
run_inference.change, | |
run_local.change, | |
scanners.change, | |
], | |
fn=enable_run_btn, | |
inputs=None, | |
outputs=[run_btn], | |
) | |
gr.on( | |
triggers=[label.change for label in column_mappings], | |
fn=enable_run_btn, | |
inputs=None, | |
outputs=[run_btn], | |
) | |