giskard-evaluator / text_classification_ui_helpers.py
inoki-giskard's picture
Add verbose mode checkbox and append verbose arg
1b0298e
raw
history blame
17.4 kB
import collections
import logging
import threading
import uuid
import datasets
import gradio as gr
import pandas as pd
import leaderboard
from io_utils import (
read_column_mapping,
write_column_mapping,
read_scanners,
write_scanners,
)
from run_jobs import save_job_to_pipe
from text_classification import (
check_model_task,
preload_hf_inference_api,
get_example_prediction,
get_labels_and_features_from_dataset,
check_hf_token_validity,
HuggingFaceInferenceAPIResponse,
)
from wordings import (
EXAMPLE_MODEL_ID,
CHECK_CONFIG_OR_SPLIT_RAW,
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
MAPPING_STYLED_ERROR_WARNING,
NOT_FOUND_MODEL_RAW,
NOT_TEXT_CLASSIFICATION_MODEL_RAW,
UNMATCHED_MODEL_DATASET_STYLED_ERROR,
CHECK_LOG_SECTION_RAW,
VALIDATED_MODEL_DATASET_STYLED,
get_dataset_fetch_error_raw,
)
import os
from app_env import HF_WRITE_TOKEN
MAX_LABELS = 40
MAX_FEATURES = 20
ds_dict = None
ds_config = None
def get_related_datasets_from_leaderboard(model_id, dataset_id_input):
records = leaderboard.records
model_records = records[records["model_id"] == model_id]
datasets_unique = list(model_records["dataset_id"].unique())
if len(datasets_unique) == 0:
return gr.update(choices=[])
if dataset_id_input in datasets_unique:
return gr.update(choices=datasets_unique)
return gr.update(choices=datasets_unique, value="")
logger = logging.getLogger(__file__)
def get_dataset_splits(dataset_id, dataset_config):
try:
splits = datasets.get_dataset_split_names(
dataset_id, dataset_config, trust_remote_code=True
)
return gr.update(choices=splits, value=splits[0], visible=True)
except Exception as e:
logger.warning(
f"Check your dataset {dataset_id} and config {dataset_config}: {e}"
)
return gr.update(visible=False)
def check_dataset(dataset_id):
logger.info(f"Loading {dataset_id}")
try:
configs = datasets.get_dataset_config_names(dataset_id, trust_remote_code=True)
if len(configs) == 0:
return (gr.update(visible=False), gr.update(visible=False), "")
splits = datasets.get_dataset_split_names(
dataset_id, configs[0], trust_remote_code=True
)
return (
gr.update(choices=configs, value=configs[0], visible=True),
gr.update(choices=splits, value=splits[0], visible=True),
"",
)
except Exception as e:
logger.warning(f"Check your dataset {dataset_id}: {e}")
if "doesn't exist" in str(e):
gr.Warning(get_dataset_fetch_error_raw(e))
if "forbidden" in str(e).lower(): # GSK-2770
gr.Warning(get_dataset_fetch_error_raw(e))
return (gr.update(visible=False), gr.update(visible=False), "")
def empty_column_mapping(uid):
write_column_mapping(None, uid)
def write_column_mapping_to_config(uid, *labels):
# TODO: Substitute 'text' with more features for zero-shot
# we are not using ds features because we only support "text" for now
all_mappings = read_column_mapping(uid)
if labels is None:
return
all_mappings = export_mappings(all_mappings, "labels", None, labels[:MAX_LABELS])
all_mappings = export_mappings(
all_mappings,
"features",
["text"],
labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)],
)
write_column_mapping(all_mappings, uid)
def export_mappings(all_mappings, key, subkeys, values):
if key not in all_mappings.keys():
all_mappings[key] = dict()
if subkeys is None:
subkeys = list(all_mappings[key].keys())
if not subkeys:
logging.debug(f"subkeys is empty for {key}")
return all_mappings
for i, subkey in enumerate(subkeys):
if subkey:
all_mappings[key][subkey] = values[i % len(values)]
return all_mappings
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_labels, uid):
all_mappings = read_column_mapping(uid)
# For flattened raw datasets with no labels
# check if there are shared labels between model and dataset
shared_labels = set(model_labels).intersection(set(ds_labels))
if shared_labels:
ds_labels = list(shared_labels)
if len(ds_labels) > MAX_LABELS:
ds_labels = ds_labels[:MAX_LABELS]
gr.Warning(
f"Too many labels to display for this spcae. We do not support more than {MAX_LABELS} in this space. You can use cli tool at https://github.com/Giskard-AI/cicd."
)
# sort labels to make sure the order is consistent
# prediction gives the order based on probability
ds_labels.sort()
model_labels.sort()
lables = [
gr.Dropdown(
label=f"{label}",
choices=model_labels,
value=model_labels[i % len(model_labels)],
interactive=True,
visible=True,
)
for i, label in enumerate(ds_labels)
]
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
all_mappings = export_mappings(all_mappings, "labels", ds_labels, model_labels)
# TODO: Substitute 'text' with more features for zero-shot
features = [
gr.Dropdown(
label=f"{feature}",
choices=ds_features,
value=ds_features[0],
interactive=True,
visible=True,
)
for feature in ["text"]
]
features += [
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
]
all_mappings = export_mappings(all_mappings, "features", ["text"], ds_features)
write_column_mapping(all_mappings, uid)
return lables + features
def precheck_model_ds_enable_example_btn(
model_id, dataset_id, dataset_config, dataset_split
):
model_task = check_model_task(model_id)
if not model_task:
# Model might be not found
error_msg_html = f"<p style='color: red;'>{NOT_FOUND_MODEL_RAW}</p>"
if model_id.startswith("http://") or model_id.startswith("https://"):
error_msg = f"Please input your model id, such as {EXAMPLE_MODEL_ID}, instead of URL"
gr.Warning(error_msg)
error_msg_html = f"<p style='color: red;'>{error_msg}</p>"
else:
gr.Warning(NOT_FOUND_MODEL_RAW)
return (
gr.update(interactive=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=error_msg_html, visible=True),
)
if model_task != "text-classification":
gr.Warning(NOT_TEXT_CLASSIFICATION_MODEL_RAW)
return (
gr.update(interactive=False),
gr.update(value=df, visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(
value=f"<p style='color: red;'>{NOT_TEXT_CLASSIFICATION_MODEL_RAW}",
visible=True,
),
)
preload_hf_inference_api(model_id)
if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
return (
gr.update(interactive=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
try:
ds = datasets.load_dataset(dataset_id, dataset_config, trust_remote_code=True)
df: pd.DataFrame = ds[dataset_split].to_pandas().head(5)
ds_labels, ds_features, _ = get_labels_and_features_from_dataset(
ds[dataset_split]
)
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
return (
gr.update(interactive=False),
gr.update(value=df, visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
return (
gr.update(interactive=True),
gr.update(value=df, visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
except Exception as e:
# Config or split wrong
logger.warning(
f"Check your dataset {dataset_id} and config {dataset_config} on split {dataset_split}: {e}"
)
return (
gr.update(interactive=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
def align_columns_and_show_prediction(
model_id,
dataset_id,
dataset_config,
dataset_split,
uid,
inference_token,
):
model_task = check_model_task(model_id)
if model_task is None or model_task != "text-classification":
gr.Warning(NOT_TEXT_CLASSIFICATION_MODEL_RAW)
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
)
dropdown_placement = [
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
]
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
prediction_input, prediction_response = get_example_prediction(
model_id, dataset_id, dataset_config, dataset_split, hf_token
)
if prediction_input is None or prediction_response is None:
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*dropdown_placement,
)
if isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
f"Hugging Face Inference API is loading your model. {prediction_response.message}",
*dropdown_placement,
)
model_labels = list(prediction_response.keys())
ds = datasets.load_dataset(
dataset_id, dataset_config, split=dataset_split, trust_remote_code=True
)
ds_labels, ds_features, _ = get_labels_and_features_from_dataset(ds)
# when dataset does not have labels or features
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*dropdown_placement,
)
if len(ds_labels) != len(model_labels):
return (
gr.update(value=UNMATCHED_MODEL_DATASET_STYLED_ERROR, visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*dropdown_placement,
)
column_mappings = list_labels_and_features_from_dataset(
ds_labels,
ds_features,
model_labels,
uid,
)
# when labels or features are not aligned
# show manually column mapping
if (
collections.Counter(model_labels) != collections.Counter(ds_labels)
or ds_features[0] != "text"
):
return (
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
gr.update(
value=prediction_input,
lines=min(len(prediction_input) // 225 + 1, 5),
visible=True,
),
gr.update(value=prediction_response, visible=True),
gr.update(visible=True, open=True),
gr.update(interactive=(inference_token != "")),
"",
*column_mappings,
)
return (
gr.update(value=VALIDATED_MODEL_DATASET_STYLED, visible=True),
gr.update(
value=prediction_input,
lines=min(len(prediction_input) // 225 + 1, 5),
visible=True,
),
gr.update(value=prediction_response, visible=True),
gr.update(visible=True, open=False),
gr.update(interactive=(inference_token != "")),
"",
*column_mappings,
)
def check_column_mapping_keys_validity(all_mappings):
if all_mappings is None:
logger.warning("all_mapping is None")
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return False
if "labels" not in all_mappings.keys():
logger.warning(f"Label mapping is not valid, all_mappings: {all_mappings}")
return False
return True
def enable_run_btn(
uid, inference_token, model_id, dataset_id, dataset_config, dataset_split
):
if inference_token == "":
logger.warning("Inference API is not enabled")
return gr.update(interactive=False)
if (
model_id == ""
or dataset_id == ""
or dataset_config == ""
or dataset_split == ""
):
logger.warning("Model id or dataset id is not selected")
return gr.update(interactive=False)
all_mappings = read_column_mapping(uid)
if not check_column_mapping_keys_validity(all_mappings):
logger.warning("Column mapping is not valid")
return gr.update(interactive=False)
if not check_hf_token_validity(inference_token):
logger.warning("HF token is not valid")
return gr.update(interactive=False)
return gr.update(interactive=True)
def construct_label_and_feature_mapping(
all_mappings, ds_labels, ds_features, label_keys=None
):
label_mapping = {}
if len(all_mappings["labels"].keys()) != len(ds_labels):
logger.warning(
f"""Label mapping corrupted: {CONFIRM_MAPPING_DETAILS_FAIL_RAW}.
\nall_mappings: {all_mappings}\nds_labels: {ds_labels}"""
)
if len(all_mappings["features"].keys()) != len(ds_features):
logger.warning(
f"""Feature mapping corrupted: {CONFIRM_MAPPING_DETAILS_FAIL_RAW}.
\nall_mappings: {all_mappings}\nds_features: {ds_features}"""
)
for i, label in zip(range(len(ds_labels)), ds_labels):
# align the saved labels with dataset labels order
label_mapping.update({str(i): all_mappings["labels"][label]})
if "features" not in all_mappings.keys():
logger.warning("features not in all_mappings")
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
feature_mapping = all_mappings["features"]
if len(label_keys) > 0:
feature_mapping.update({"label": label_keys[0]})
return label_mapping, feature_mapping
def show_hf_token_info(token):
valid = check_hf_token_validity(token)
if not valid:
return gr.update(visible=True)
return gr.update(visible=False)
def try_submit(m_id, d_id, config, split, inference_token, uid, verbose):
all_mappings = read_column_mapping(uid)
if not check_column_mapping_keys_validity(all_mappings):
return (gr.update(interactive=True), gr.update(visible=False))
# get ds labels and features again for alignment
ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
ds_labels, ds_features, label_keys = get_labels_and_features_from_dataset(ds)
label_mapping, feature_mapping = construct_label_and_feature_mapping(
all_mappings, ds_labels, ds_features, label_keys
)
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
save_job_to_pipe(
uid,
(
m_id,
d_id,
config,
split,
inference_token,
uid,
label_mapping,
feature_mapping,
verbose,
),
eval_str,
threading.Lock(),
)
gr.Info("Your evaluation has been submitted")
new_uid = uuid.uuid4()
scanners = read_scanners(uid)
write_scanners(scanners, new_uid)
return (
gr.update(interactive=False), # Submit button
gr.update(
value=f"{CHECK_LOG_SECTION_RAW}Your job id is: {uid}. ",
lines=5,
visible=True,
interactive=False,
),
new_uid, # Allocate a new uuid
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)