giskard-evaluator / app_text_classification.py
ZeroCommand's picture
hide dropdown menus when the labels match when labels not matching
5058ff3
raw
history blame
10.9 kB
import gradio as gr
import datasets
import os
import time
import subprocess
import logging
import collections
import json
from transformers.pipelines import TextClassificationPipeline
from text_classification import get_labels_and_features_from_dataset, check_model, get_example_prediction
from io_utils import read_scanners, write_scanners, read_inference_type, read_column_mapping, write_column_mapping, write_inference_type
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD, CONFIRM_MAPPING_DETAILS_FAIL_RAW
HF_REPO_ID = 'HF_REPO_ID'
HF_SPACE_ID = 'SPACE_ID'
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
MAX_LABELS = 20
MAX_FEATURES = 20
EXAMPLE_MODEL_ID = 'cardiffnlp/twitter-roberta-base-sentiment-latest'
EXAMPLE_DATA_ID = 'tweet_eval'
CONFIG_PATH='./config.yaml'
def try_submit(m_id, d_id, config, split, local):
all_mappings = read_column_mapping(CONFIG_PATH)
if "labels" not in all_mappings.keys():
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return gr.update(interactive=True)
label_mapping = all_mappings["labels"]
if "features" not in all_mappings.keys():
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return gr.update(interactive=True)
feature_mapping = all_mappings["features"]
# TODO: Set column mapping for some dataset such as `amazon_polarity`
if local:
command = [
"python",
"cli.py",
"--loader", "huggingface",
"--model", m_id,
"--dataset", d_id,
"--dataset_config", config,
"--dataset_split", split,
"--hf_token", os.environ.get(HF_WRITE_TOKEN),
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
"--output_format", "markdown",
"--output_portal", "huggingface",
"--feature_mapping", json.dumps(feature_mapping),
"--label_mapping", json.dumps(label_mapping),
"--scan_config", "../config.yaml",
]
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
start = time.time()
logging.info(f"Start local evaluation on {eval_str}")
evaluator = subprocess.Popen(
command,
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
stderr=subprocess.STDOUT,
)
result = evaluator.wait()
logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
gr.Info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
else:
gr.Info("TODO: Submit task to an endpoint")
return gr.update(interactive=True) # Submit button
def check_dataset_and_get_config(dataset_id):
try:
configs = datasets.get_dataset_config_names(dataset_id)
return gr.Dropdown(configs, value=configs[0], visible=True)
except Exception:
# Dataset may not exist
pass
def check_dataset_and_get_split(dataset_id, dataset_config):
try:
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
return gr.Dropdown(splits, value=splits[0], visible=True)
except Exception:
# Dataset may not exist
# gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
pass
def get_demo():
with gr.Row():
gr.Markdown(INTRODUCTION_MD)
with gr.Row():
model_id_input = gr.Textbox(
label="Hugging Face model id",
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
)
dataset_id_input = gr.Textbox(
label="Hugging Face Dataset id",
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
)
with gr.Row():
dataset_config_input = gr.Dropdown(label='Dataset Config', visible=False)
dataset_split_input = gr.Dropdown(label='Dataset Split', visible=False)
with gr.Row():
example_input = gr.Markdown('Example Input', visible=False)
with gr.Row():
example_prediction = gr.Label(label='Model Prediction Sample', visible=False)
with gr.Row():
with gr.Accordion(label='Label and Feature Mapping', visible=False, open=False) as column_mapping_accordion:
with gr.Row():
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
column_mappings = []
with gr.Row():
with gr.Column():
for _ in range(MAX_LABELS):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Column():
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Accordion(label='Model Wrap Advance Config (optional)', open=False):
run_local = gr.Checkbox(value=True, label="Run in this Space")
use_inference = read_inference_type('./config.yaml') == 'hf_inference_api'
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
with gr.Accordion(label='Scanner Advance Config (optional)', open=False):
selected = read_scanners('./config.yaml')
scan_config = selected + ['data_leakage']
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
with gr.Row():
run_btn = gr.Button(
"Get Evaluation Result",
variant="primary",
interactive=True,
size="lg",
)
@gr.on(triggers=[label.change for label in column_mappings],
inputs=[dataset_id_input, dataset_config_input, dataset_split_input, *column_mappings])
def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *labels):
ds_labels, ds_features = get_labels_and_features_from_dataset(dataset_id, dataset_config, dataset_split)
if labels is None:
return
labels = [*labels]
all_mappings = read_column_mapping(CONFIG_PATH)
if "labels" not in all_mappings.keys():
all_mappings["labels"] = dict()
for i, label in enumerate(labels[:MAX_LABELS]):
if label:
all_mappings["labels"][label] = ds_labels[i]
if "features" not in all_mappings.keys():
all_mappings["features"] = dict()
for i, feat in enumerate(labels[MAX_LABELS:(MAX_LABELS + MAX_FEATURES)]):
if feat:
all_mappings["features"][feat] = ds_features[i]
write_column_mapping(all_mappings)
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label):
model_labels = list(model_id2label.values())
lables = [gr.Dropdown(label=f"{label}", choices=model_labels, value=model_id2label[i], interactive=True, visible=True) for i, label in enumerate(ds_labels[:MAX_LABELS])]
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
# TODO: Substitute 'text' with more features for zero-shot
features = [gr.Dropdown(label=f"{feature}", choices=ds_features, value=ds_features[0], interactive=True, visible=True) for feature in ['text']]
features += [gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))]
return lables + features
@gr.on(triggers=[model_id_input.change, dataset_config_input.change])
def clear_column_mapping_config():
write_column_mapping(None)
@gr.on(triggers=[model_id_input.change, dataset_config_input.change, dataset_split_input.change],
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
outputs=[example_input, example_prediction, column_mapping_accordion, *column_mappings])
def check_model_and_show_prediction(model_id, dataset_id, dataset_config, dataset_split):
ppl = check_model(model_id)
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
gr.Warning("Please check your model.")
return (
gr.update(visible=False),
gr.update(visible=False),
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)]
)
dropdown_placement = [gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)]
if ppl is None: # pipeline not found
gr.Warning("Model not found")
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
*dropdown_placement
)
model_id2label = ppl.model.config.id2label
ds_labels, ds_features = get_labels_and_features_from_dataset(dataset_id, dataset_config, dataset_split)
# when dataset does not have labels or features
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
*dropdown_placement
)
column_mappings = list_labels_and_features_from_dataset(
ds_labels,
ds_features,
model_id2label,
)
# when labels or features are not aligned
# show manually column mapping
if collections.Counter(model_id2label.items()) != collections.Counter(ds_labels) or ds_features[0] != 'text':
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True, open=True),
*column_mappings
)
prediction_input, prediction_output = get_example_prediction(ppl, dataset_id, dataset_config, dataset_split)
return (
gr.update(value=prediction_input, visible=True),
gr.update(value=prediction_output, visible=True),
gr.update(visible=True, open=False),
*column_mappings
)
dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
dataset_config_input.change(
check_dataset_and_get_split,
inputs=[dataset_id_input, dataset_config_input],
outputs=[dataset_split_input])
scanners.change(
write_scanners,
inputs=scanners
)
run_inference.change(
write_inference_type,
inputs=[run_inference]
)
gr.on(
triggers=[
run_btn.click,
],
fn=try_submit,
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, run_local],
outputs=[run_btn])