giskard-evaluator / io_utils.py
ZeroCommand's picture
use global queue and fix write configs
55aeb04
raw
history blame
3.77 kB
import os
import subprocess
import pipe
import yaml
YAML_PATH = "./configs"
class Dumper(yaml.Dumper):
def increase_indent(self, flow=False, *args, **kwargs):
return super().increase_indent(flow=flow, indentless=False)
def get_yaml_path(uid):
if not os.path.exists(YAML_PATH):
os.makedirs(YAML_PATH)
if not os.path.exists(f"{YAML_PATH}/{uid}_config.yaml"):
os.system(f"cp {YAML_PATH}/config.yaml {YAML_PATH}/{uid}_config.yaml")
return f"{YAML_PATH}/{uid}_config.yaml"
# read scanners from yaml file
# return a list of scanners
def read_scanners(uid):
scanners = []
with open(get_yaml_path(uid), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
scanners = config.get("detectors", [])
f.close()
return scanners
# convert a list of scanners to yaml file
def write_scanners(scanners, uid):
with open(get_yaml_path(uid), "r+") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if config:
config["detectors"] = scanners
# save scanners to detectors in yaml
yaml.dump(config, f, Dumper=Dumper)
f.close()
# read model_type from yaml file
def read_inference_type(uid):
inference_type = ""
with open(get_yaml_path(uid), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
inference_type = config.get("inference_type", "")
f.close()
return inference_type
# write model_type to yaml file
def write_inference_type(use_inference, uid):
with open(get_yaml_path(uid), "r+") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if use_inference:
config["inference_type"] = "hf_inference_api"
else:
config["inference_type"] = "hf_pipeline"
# save inference_type to inference_type in yaml
yaml.dump(config, f, Dumper=Dumper)
f.close()
# read column mapping from yaml file
def read_column_mapping(uid):
column_mapping = {}
with open(get_yaml_path(uid), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if config:
column_mapping = config.get("column_mapping", dict())
f.close()
return column_mapping
# write column mapping to yaml file
def write_column_mapping(mapping, uid):
with open(get_yaml_path(uid), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
f.close()
if config is None:
return
if mapping is None and "column_mapping" in config.keys():
del config["column_mapping"]
else:
config["column_mapping"] = mapping
with open(get_yaml_path(uid), "w") as f:
# save column_mapping to column_mapping in yaml
yaml.dump(config, f, Dumper=Dumper)
f.close()
# convert column mapping dataframe to json
def convert_column_mapping_to_json(df, label=""):
column_mapping = {}
column_mapping[label] = []
for _, row in df.iterrows():
column_mapping[label].append(row.tolist())
return column_mapping
def get_logs_file(uid):
try:
file = open(f"./tmp/{uid}_log", "r")
return file.read()
except Exception:
return "Log file does not exist"
def write_log_to_user_file(id, log):
with open(f"./tmp/{id}_log", "a") as f:
f.write(log)
def save_job_to_pipe(id, job, lock):
with lock:
pipe.jobs.append((id, job))
def pop_job_from_pipe():
if len(pipe.jobs) == 0:
return
job_info = pipe.jobs.pop()
write_log_to_user_file(job_info[0], f"Running job id {job_info[0]}\n")
command = job_info[1]
log_file = open(f"./tmp/{job_info[0]}_log", "a")
subprocess.Popen(
command,
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
stdout=log_file,
stderr=log_file,
)