giskard-evaluator / text_classification_ui_helpers.py
ZeroCommand's picture
remove pipeline and improve events trigger
461883a
raw
history blame
12.6 kB
import collections
import json
import logging
import os
import threading
import uuid
import leaderboard
import datasets
import gradio as gr
import pandas as pd
from io_utils import (
get_yaml_path,
read_column_mapping,
save_job_to_pipe,
write_column_mapping,
write_log_to_user_file,
)
from text_classification import (
check_model_task,
get_example_prediction,
get_labels_and_features_from_dataset,
)
from wordings import (
CHECK_CONFIG_OR_SPLIT_RAW,
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
MAPPING_STYLED_ERROR_WARNING,
get_styled_input,
)
MAX_LABELS = 40
MAX_FEATURES = 20
HF_REPO_ID = "HF_REPO_ID"
HF_SPACE_ID = "SPACE_ID"
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
HF_GSK_HUB_URL = "GSK_HUB_URL"
HF_GSK_HUB_PROJECT_KEY = "GSK_HUB_PROJECT_KEY"
HF_GSK_HUB_KEY = "GSK_API_KEY"
HF_GSK_HUB_HF_TOKEN = "GSK_HF_TOKEN"
HF_GSK_HUB_UNLOCK_TOKEN = "GSK_HUB_UNLOCK_TOKEN"
LEADERBOARD = "giskard-bot/evaluator-leaderboard"
global ds_dict, ds_config
ds_dict = None
ds_config = None
def get_related_datasets_from_leaderboard(model_id):
records = leaderboard.records
model_records = records[records["model_id"] == model_id]
datasets_unique = list(model_records["dataset_id"].unique())
if len(datasets_unique) == 0:
all_unique_datasets = list(records["dataset_id"].unique())
return gr.update(choices=all_unique_datasets, value="")
return gr.update(choices=datasets_unique, value=datasets_unique[0])
logger = logging.getLogger(__file__)
def check_dataset(dataset_id):
logger.info(f"Loading {dataset_id}")
try:
configs = datasets.get_dataset_config_names(dataset_id)
if len(configs) == 0:
return (
gr.update(),
gr.update(),
""
)
splits = list(
datasets.load_dataset(
dataset_id, configs[0]
).keys()
)
return (
gr.update(choices=configs, value=configs[0], visible=True),
gr.update(choices=splits, value=splits[0], visible=True),
""
)
except Exception as e:
logger.warn(f"Check your dataset {dataset_id}: {e}")
return (
gr.update(),
gr.update(),
""
)
def write_column_mapping_to_config(uid, *labels):
# TODO: Substitute 'text' with more features for zero-shot
# we are not using ds features because we only support "text" for now
all_mappings = read_column_mapping(uid)
if labels is None:
return
all_mappings = export_mappings(all_mappings, "labels", None, labels[:MAX_LABELS])
all_mappings = export_mappings(
all_mappings,
"features",
["text"],
labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)],
)
write_column_mapping(all_mappings, uid)
def export_mappings(all_mappings, key, subkeys, values):
if key not in all_mappings.keys():
all_mappings[key] = dict()
if subkeys is None:
subkeys = list(all_mappings[key].keys())
if not subkeys:
logging.debug(f"subkeys is empty for {key}")
return all_mappings
for i, subkey in enumerate(subkeys):
if subkey:
all_mappings[key][subkey] = values[i % len(values)]
return all_mappings
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_labels, uid):
all_mappings = read_column_mapping(uid)
# For flattened raw datasets with no labels
# check if there are shared labels between model and dataset
shared_labels = set(model_labels).intersection(set(ds_labels))
if shared_labels:
ds_labels = list(shared_labels)
if len(ds_labels) > MAX_LABELS:
ds_labels = ds_labels[:MAX_LABELS]
gr.Warning(f"The number of labels is truncated to length {MAX_LABELS}")
ds_labels.sort()
model_labels.sort()
lables = [
gr.Dropdown(
label=f"{label}",
choices=model_labels,
value=model_labels[i % len(model_labels)],
interactive=True,
visible=True,
)
for i, label in enumerate(ds_labels)
]
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
all_mappings = export_mappings(all_mappings, "labels", ds_labels, model_labels)
# TODO: Substitute 'text' with more features for zero-shot
features = [
gr.Dropdown(
label=f"{feature}",
choices=ds_features,
value=ds_features[0],
interactive=True,
visible=True,
)
for feature in ["text"]
]
features += [
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
]
all_mappings = export_mappings(all_mappings, "features", ["text"], ds_features)
write_column_mapping(all_mappings, uid)
return lables + features
def precheck_model_ds_enable_example_btn(
model_id, dataset_id, dataset_config, dataset_split
):
model_task = check_model_task(model_id)
if model_task is None or model_task != "text-classification":
gr.Warning("Please check your model.")
return gr.update(interactive=False), ""
if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
return (gr.update(), gr.update(), "")
try:
ds = datasets.load_dataset(dataset_id, dataset_config)
df: pd.DataFrame = ds[dataset_split].to_pandas().head(5)
ds_labels, ds_features = get_labels_and_features_from_dataset(ds[dataset_split])
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
return (gr.update(interactive=False), gr.update(value=df, visible=True), "")
return (gr.update(interactive=True), gr.update(value=df, visible=True), "")
except Exception as e:
# Config or split wrong
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
return (gr.update(interactive=False), gr.update(value=pd.DataFrame(), visible=False), "")
def align_columns_and_show_prediction(
model_id, dataset_id, dataset_config, dataset_split, uid, run_inference, inference_token
):
model_task = check_model_task(model_id)
if model_task is None or model_task != "text-classification":
gr.Warning("Please check your model.")
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
)
dropdown_placement = [
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
]
prediction_input, prediction_output = get_example_prediction(
model_id, dataset_id, dataset_config, dataset_split
)
model_labels = list(prediction_output.keys())
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
# when dataset does not have labels or features
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*dropdown_placement,
)
column_mappings = list_labels_and_features_from_dataset(
ds_labels,
ds_features,
model_labels,
uid,
)
# when labels or features are not aligned
# show manually column mapping
if (
collections.Counter(model_labels) != collections.Counter(ds_labels)
or ds_features[0] != "text"
):
return (
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
gr.update(visible=False),
gr.update(visible=True, open=True),
gr.update(interactive=(run_inference and inference_token != "")),
"",
*column_mappings,
)
return (
gr.update(value=get_styled_input(prediction_input), visible=True),
gr.update(value=prediction_output, visible=True),
gr.update(visible=True, open=False),
gr.update(interactive=(run_inference and inference_token != "")),
"",
*column_mappings,
)
def check_column_mapping_keys_validity(all_mappings):
if all_mappings is None:
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return (gr.update(interactive=True), gr.update(visible=False))
if "labels" not in all_mappings.keys():
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return (gr.update(interactive=True), gr.update(visible=False))
def construct_label_and_feature_mapping(all_mappings):
label_mapping = {}
for i, label in zip(
range(len(all_mappings["labels"].keys())), all_mappings["labels"].keys()
):
label_mapping.update({str(i): label})
if "features" not in all_mappings.keys():
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return (gr.update(interactive=True), gr.update(visible=False))
feature_mapping = all_mappings["features"]
return label_mapping, feature_mapping
def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
all_mappings = read_column_mapping(uid)
check_column_mapping_keys_validity(all_mappings)
label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings)
leaderboard_dataset = None
if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
leaderboard_dataset = LEADERBOARD
if inference:
inference_type = "hf_inference_api"
# TODO: Set column mapping for some dataset such as `amazon_polarity`
command = [
"giskard_scanner",
"--loader",
"huggingface",
"--model",
m_id,
"--dataset",
d_id,
"--dataset_config",
config,
"--dataset_split",
split,
"--output_format",
"markdown",
"--output_portal",
"huggingface",
"--feature_mapping",
json.dumps(feature_mapping),
"--label_mapping",
json.dumps(label_mapping),
"--scan_config",
get_yaml_path(uid),
"--inference_type",
inference_type,
"--inference_api_token",
inference_token,
]
# The token to publish post
if os.environ.get(HF_WRITE_TOKEN):
command.append("--hf_token")
command.append(os.environ.get(HF_WRITE_TOKEN))
# The repo to publish post
if os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID):
command.append("--discussion_repo")
# TODO: Replace by the model id
command.append(os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID))
# The repo to publish for ranking
if leaderboard_dataset:
command.append("--leaderboard_dataset")
command.append(leaderboard_dataset)
# The info to upload to Giskard hub
if os.environ.get(HF_GSK_HUB_KEY):
command.append("--giskard_hub_api_key")
command.append(os.environ.get(HF_GSK_HUB_KEY))
if os.environ.get(HF_GSK_HUB_URL):
command.append("--giskard_hub_url")
command.append(os.environ.get(HF_GSK_HUB_URL))
if os.environ.get(HF_GSK_HUB_PROJECT_KEY):
command.append("--giskard_hub_project_key")
command.append(os.environ.get(HF_GSK_HUB_PROJECT_KEY))
if os.environ.get(HF_GSK_HUB_HF_TOKEN):
command.append("--giskard_hub_hf_token")
command.append(os.environ.get(HF_GSK_HUB_HF_TOKEN))
if os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN):
command.append("--giskard_hub_unlock_token")
command.append(os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN))
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
logging.info(f"Start local evaluation on {eval_str}")
save_job_to_pipe(uid, command, eval_str, threading.Lock())
write_log_to_user_file(
uid,
f"Start local evaluation on {eval_str}. Please wait for your job to start...\n",
)
gr.Info(f"Start local evaluation on {eval_str}")
return (
gr.update(interactive=False), # Submit button
gr.update(lines=5, visible=True, interactive=False),
uuid.uuid4(), # Allocate a new uuid
)