Spaces:
Sleeping
Sleeping
ZeroCommand
commited on
Commit
·
09f3a52
1
Parent(s):
a48ba21
update inference api arg in yaml; update error handling
Browse files- app.py +27 -14
- scan_config.yaml → config.yaml +3 -1
- text_classification.py +27 -15
- utils.py +33 -3
app.py
CHANGED
@@ -11,7 +11,7 @@ import json
|
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
-
from utils import read_scanners, write_scanners, convert_column_mapping_to_json
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
HF_SPACE_ID = 'SPACE_ID'
|
@@ -160,10 +160,14 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
160 |
)
|
161 |
|
162 |
|
163 |
-
def try_submit(m_id, d_id, config, split,
|
164 |
label_mapping = {}
|
165 |
-
for i, label in
|
166 |
label_mapping.update({str(i): label})
|
|
|
|
|
|
|
|
|
167 |
|
168 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
169 |
|
@@ -180,9 +184,9 @@ def try_submit(m_id, d_id, config, split, column_mappings, local):
|
|
180 |
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
181 |
"--output_format", "markdown",
|
182 |
"--output_portal", "huggingface",
|
183 |
-
|
184 |
"--label_mapping", json.dumps(label_mapping),
|
185 |
-
"--scan_config", "./
|
186 |
]
|
187 |
|
188 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
@@ -227,11 +231,12 @@ with gr.Blocks(theme=theme) as iface:
|
|
227 |
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None, feature_mapping_dataframe=None):
|
228 |
column_mapping = '{}'
|
229 |
_, ppl = check_model(model_id=model_id)
|
|
|
230 |
if id2label_mapping_dataframe is not None:
|
231 |
labels = convert_column_mapping_to_json(id2label_mapping_dataframe.value, label="data")
|
232 |
features = convert_column_mapping_to_json(feature_mapping_dataframe.value, label="text")
|
233 |
column_mapping = json.dumps({**labels, **features}, indent=2)
|
234 |
-
|
235 |
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
236 |
gr.Warning('Label mapping table has invalid contents. Please check again.')
|
237 |
return (gr.update(interactive=False),
|
@@ -261,10 +266,11 @@ with gr.Blocks(theme=theme) as iface:
|
|
261 |
''')
|
262 |
with gr.Row():
|
263 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
264 |
-
|
|
|
265 |
|
266 |
with gr.Row() as advanced_row:
|
267 |
-
selected = read_scanners('./
|
268 |
scan_config = selected + ['data_leakage']
|
269 |
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
|
270 |
|
@@ -282,8 +288,10 @@ with gr.Blocks(theme=theme) as iface:
|
|
282 |
dataset_config_input = gr.Dropdown(['default'], value='default', label='Dataset Config', visible=False)
|
283 |
dataset_split_input = gr.Dropdown(['default'], value='default', label='Dataset Split', visible=False)
|
284 |
|
285 |
-
dataset_id_input.
|
286 |
-
|
|
|
|
|
287 |
check_dataset_and_get_split,
|
288 |
inputs=[dataset_config_input, dataset_id_input],
|
289 |
outputs=[dataset_split_input])
|
@@ -319,16 +327,16 @@ with gr.Blocks(theme=theme) as iface:
|
|
319 |
size="lg",
|
320 |
)
|
321 |
|
322 |
-
model_id_input.
|
323 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
324 |
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
325 |
-
dataset_id_input.
|
326 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
327 |
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
328 |
-
dataset_config_input.
|
329 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
330 |
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
331 |
-
dataset_split_input.
|
332 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
333 |
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
334 |
id2label_mapping_dataframe.input(gate_validate_btn,
|
@@ -338,6 +346,10 @@ with gr.Blocks(theme=theme) as iface:
|
|
338 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
|
339 |
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
340 |
scanners.change(write_scanners, inputs=scanners)
|
|
|
|
|
|
|
|
|
341 |
|
342 |
run_btn.click(
|
343 |
try_submit,
|
@@ -347,6 +359,7 @@ with gr.Blocks(theme=theme) as iface:
|
|
347 |
dataset_config_input,
|
348 |
dataset_split_input,
|
349 |
id2label_mapping_dataframe,
|
|
|
350 |
run_local,
|
351 |
],
|
352 |
outputs=[
|
|
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
+
from utils import read_scanners, write_scanners, read_model_type, write_model_type, convert_column_mapping_to_json
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
HF_SPACE_ID = 'SPACE_ID'
|
|
|
160 |
)
|
161 |
|
162 |
|
163 |
+
def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_mapping_dataframe, local):
|
164 |
label_mapping = {}
|
165 |
+
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
|
166 |
label_mapping.update({str(i): label})
|
167 |
+
|
168 |
+
feature_mapping = {}
|
169 |
+
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
|
170 |
+
feature_mapping.update({feature_mapping_dataframe["Model Input Features"][i]: feature})
|
171 |
|
172 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
173 |
|
|
|
184 |
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
185 |
"--output_format", "markdown",
|
186 |
"--output_portal", "huggingface",
|
187 |
+
"--feature_mapping", json.dumps(feature_mapping),
|
188 |
"--label_mapping", json.dumps(label_mapping),
|
189 |
+
"--scan_config", "./config.yaml",
|
190 |
]
|
191 |
|
192 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
|
|
231 |
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None, feature_mapping_dataframe=None):
|
232 |
column_mapping = '{}'
|
233 |
_, ppl = check_model(model_id=model_id)
|
234 |
+
|
235 |
if id2label_mapping_dataframe is not None:
|
236 |
labels = convert_column_mapping_to_json(id2label_mapping_dataframe.value, label="data")
|
237 |
features = convert_column_mapping_to_json(feature_mapping_dataframe.value, label="text")
|
238 |
column_mapping = json.dumps({**labels, **features}, indent=2)
|
239 |
+
|
240 |
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
241 |
gr.Warning('Label mapping table has invalid contents. Please check again.')
|
242 |
return (gr.update(interactive=False),
|
|
|
266 |
''')
|
267 |
with gr.Row():
|
268 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
269 |
+
use_inference = read_model_type('./config.yaml')[0] == 'hf_inference_api'
|
270 |
+
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
271 |
|
272 |
with gr.Row() as advanced_row:
|
273 |
+
selected = read_scanners('./config.yaml')
|
274 |
scan_config = selected + ['data_leakage']
|
275 |
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
|
276 |
|
|
|
288 |
dataset_config_input = gr.Dropdown(['default'], value='default', label='Dataset Config', visible=False)
|
289 |
dataset_split_input = gr.Dropdown(['default'], value='default', label='Dataset Split', visible=False)
|
290 |
|
291 |
+
dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
292 |
+
dataset_id_input.submit(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
293 |
+
|
294 |
+
dataset_config_input.blur(
|
295 |
check_dataset_and_get_split,
|
296 |
inputs=[dataset_config_input, dataset_id_input],
|
297 |
outputs=[dataset_split_input])
|
|
|
327 |
size="lg",
|
328 |
)
|
329 |
|
330 |
+
model_id_input.blur(gate_validate_btn,
|
331 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
332 |
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
333 |
+
dataset_id_input.blur(gate_validate_btn,
|
334 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
335 |
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
336 |
+
dataset_config_input.input(gate_validate_btn,
|
337 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
338 |
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
339 |
+
dataset_split_input.input(gate_validate_btn,
|
340 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
341 |
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
342 |
id2label_mapping_dataframe.input(gate_validate_btn,
|
|
|
346 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
|
347 |
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
348 |
scanners.change(write_scanners, inputs=scanners)
|
349 |
+
run_inference.change(
|
350 |
+
write_model_type,
|
351 |
+
inputs=[run_inference]
|
352 |
+
)
|
353 |
|
354 |
run_btn.click(
|
355 |
try_submit,
|
|
|
359 |
dataset_config_input,
|
360 |
dataset_split_input,
|
361 |
id2label_mapping_dataframe,
|
362 |
+
feature_mapping_dataframe,
|
363 |
run_local,
|
364 |
],
|
365 |
outputs=[
|
scan_config.yaml → config.yaml
RENAMED
@@ -5,4 +5,6 @@ detectors:
|
|
5 |
- performance
|
6 |
- underconfidence
|
7 |
- overconfidence
|
8 |
-
- spurious_correlation
|
|
|
|
|
|
5 |
- performance
|
6 |
- underconfidence
|
7 |
- overconfidence
|
8 |
+
- spurious_correlation
|
9 |
+
model_type:
|
10 |
+
- hf_inference_api
|
text_classification.py
CHANGED
@@ -35,7 +35,18 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
35 |
|
36 |
return id2label_mapping, dataset_labels
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def check_column_mapping_keys_validity(column_mapping, ppl):
|
40 |
# get the element in all the list elements
|
41 |
column_mapping = json.loads(column_mapping)
|
@@ -49,16 +60,7 @@ def check_column_mapping_keys_validity(column_mapping, ppl):
|
|
49 |
|
50 |
return user_labels == model_labels == original_labels
|
51 |
|
52 |
-
|
53 |
-
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
54 |
-
# We assume dataset is ok here
|
55 |
-
ds = datasets.load_dataset(d_id, config)[split]
|
56 |
-
try:
|
57 |
-
dataset_features = ds.features
|
58 |
-
except AttributeError:
|
59 |
-
# Dataset does not have features, need to provide everything
|
60 |
-
return None, None, None, None, None
|
61 |
-
|
62 |
# Check whether we need to infer the text input column
|
63 |
infer_text_input_column = True
|
64 |
feature_map_df = None
|
@@ -79,9 +81,19 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
79 |
if len(candidates) > 0:
|
80 |
logging.debug(f"Candidates are {candidates}")
|
81 |
column_mapping["text"] = candidates[0]
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# Load dataset as DataFrame
|
87 |
df = ds.to_pandas()
|
@@ -97,7 +109,6 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
97 |
v: k for k, v in id2label_mapping.items()
|
98 |
}
|
99 |
|
100 |
-
# TODO: convert dataframe column mapping to json properly
|
101 |
if "data" in column_mapping.keys():
|
102 |
if isinstance(column_mapping["data"], list):
|
103 |
# Use the column mapping passed by user
|
@@ -114,6 +125,7 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
114 |
"Model Prediction Labels": [id2label_mapping_dataset_model[label] for label in dataset_labels],
|
115 |
})
|
116 |
|
|
|
117 |
prediction_input = None
|
118 |
prediction_result = None
|
119 |
try:
|
|
|
35 |
|
36 |
return id2label_mapping, dataset_labels
|
37 |
|
38 |
+
'''
|
39 |
+
params:
|
40 |
+
column_mapping: dict
|
41 |
+
example: {
|
42 |
+
"text": "sentences",
|
43 |
+
"label": {
|
44 |
+
"label0": "LABEL_0",
|
45 |
+
"label1": "LABEL_1"
|
46 |
+
}
|
47 |
+
}
|
48 |
+
ppl: pipeline
|
49 |
+
'''
|
50 |
def check_column_mapping_keys_validity(column_mapping, ppl):
|
51 |
# get the element in all the list elements
|
52 |
column_mapping = json.loads(column_mapping)
|
|
|
60 |
|
61 |
return user_labels == model_labels == original_labels
|
62 |
|
63 |
+
def infer_text_input_column(column_mapping, dataset_features):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
# Check whether we need to infer the text input column
|
65 |
infer_text_input_column = True
|
66 |
feature_map_df = None
|
|
|
81 |
if len(candidates) > 0:
|
82 |
logging.debug(f"Candidates are {candidates}")
|
83 |
column_mapping["text"] = candidates[0]
|
84 |
+
|
85 |
+
return column_mapping, feature_map_df
|
86 |
+
|
87 |
+
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
88 |
+
# We assume dataset is ok here
|
89 |
+
ds = datasets.load_dataset(d_id, config)[split]
|
90 |
+
try:
|
91 |
+
dataset_features = ds.features
|
92 |
+
except AttributeError:
|
93 |
+
# Dataset does not have features, need to provide everything
|
94 |
+
return None, None, None, None, None
|
95 |
+
|
96 |
+
column_mapping, feature_map_df = infer_text_input_column(column_mapping, dataset_features)
|
97 |
|
98 |
# Load dataset as DataFrame
|
99 |
df = ds.to_pandas()
|
|
|
109 |
v: k for k, v in id2label_mapping.items()
|
110 |
}
|
111 |
|
|
|
112 |
if "data" in column_mapping.keys():
|
113 |
if isinstance(column_mapping["data"], list):
|
114 |
# Use the column mapping passed by user
|
|
|
125 |
"Model Prediction Labels": [id2label_mapping_dataset_model[label] for label in dataset_labels],
|
126 |
})
|
127 |
|
128 |
+
# get a sample prediction from the model on the dataset
|
129 |
prediction_input = None
|
130 |
prediction_result = None
|
131 |
try:
|
utils.py
CHANGED
@@ -1,5 +1,11 @@
|
|
1 |
import yaml
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
# read scanners from yaml file
|
4 |
# return a list of scanners
|
5 |
def read_scanners(path):
|
@@ -11,9 +17,33 @@ def read_scanners(path):
|
|
11 |
|
12 |
# convert a list of scanners to yaml file
|
13 |
def write_scanners(scanners):
|
14 |
-
with open(
|
|
|
|
|
|
|
|
|
15 |
# save scanners to detectors in yaml
|
16 |
-
yaml.dump(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# convert column mapping dataframe to json
|
19 |
def convert_column_mapping_to_json(df, label=""):
|
|
|
1 |
import yaml
|
2 |
+
|
3 |
+
YAML_PATH = "./config.yaml"
|
4 |
+
|
5 |
+
class Dumper(yaml.Dumper):
|
6 |
+
def increase_indent(self, flow=False, *args, **kwargs):
|
7 |
+
return super().increase_indent(flow=flow, indentless=False)
|
8 |
+
|
9 |
# read scanners from yaml file
|
10 |
# return a list of scanners
|
11 |
def read_scanners(path):
|
|
|
17 |
|
18 |
# convert a list of scanners to yaml file
|
19 |
def write_scanners(scanners):
|
20 |
+
with open(YAML_PATH, "r") as f:
|
21 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
22 |
+
|
23 |
+
config["detectors"] = scanners
|
24 |
+
with open(YAML_PATH, "w") as f:
|
25 |
# save scanners to detectors in yaml
|
26 |
+
yaml.dump(config, f, Dumper=Dumper)
|
27 |
+
|
28 |
+
# read model_type from yaml file
|
29 |
+
def read_model_type(path):
|
30 |
+
model_type = ""
|
31 |
+
with open(path, "r") as f:
|
32 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
33 |
+
model_type = config.get("model_type", None)
|
34 |
+
return model_type
|
35 |
+
|
36 |
+
# write model_type to yaml file
|
37 |
+
def write_model_type(use_inference):
|
38 |
+
with open(YAML_PATH, "r") as f:
|
39 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
40 |
+
if use_inference:
|
41 |
+
config["model_type"] = ['hf_inference_api']
|
42 |
+
else:
|
43 |
+
config["model_type"] = ['hf_pipeline']
|
44 |
+
with open(YAML_PATH, "w") as f:
|
45 |
+
# save model_type to model_type in yaml
|
46 |
+
yaml.dump(config, f, Dumper=Dumper)
|
47 |
|
48 |
# convert column mapping dataframe to json
|
49 |
def convert_column_mapping_to_json(df, label=""):
|