ZeroCommand commited on
Commit
2f7dd9a
·
1 Parent(s): 79d13cd

check if config submitted path exist

Browse files
app_debug.py CHANGED
@@ -3,7 +3,7 @@ from os.path import isfile, join
3
  import html
4
 
5
  import gradio as gr
6
-
7
  import pipe
8
  from io_utils import get_logs_file
9
 
@@ -69,6 +69,8 @@ def get_queue_status():
69
 
70
 
71
  def get_demo():
 
 
72
  with gr.Row():
73
  gr.HTML(
74
  value=get_queue_status,
 
3
  import html
4
 
5
  import gradio as gr
6
+ import os
7
  import pipe
8
  from io_utils import get_logs_file
9
 
 
69
 
70
 
71
  def get_demo():
72
+ if not os.path.exists(CONFIG_PATH):
73
+ os.makedirs(CONFIG_PATH)
74
  with gr.Row():
75
  gr.HTML(
76
  value=get_queue_status,
text_classification.py CHANGED
@@ -7,9 +7,9 @@ import pandas as pd
7
  from transformers import pipeline
8
  import requests
9
  import os
 
10
 
11
  logger = logging.getLogger(__name__)
12
- HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
13
  AUTH_CHECK_URL = "https://huggingface.co/api/whoami-v2"
14
 
15
  logger = logging.getLogger(__file__)
 
7
  from transformers import pipeline
8
  import requests
9
  import os
10
+ from app_env import HF_WRITE_TOKEN
11
 
12
  logger = logging.getLogger(__name__)
 
13
  AUTH_CHECK_URL = "https://huggingface.co/api/whoami-v2"
14
 
15
  logger = logging.getLogger(__file__)
text_classification_ui_helpers.py CHANGED
@@ -35,6 +35,7 @@ from wordings import (
35
  get_dataset_fetch_error_raw,
36
  )
37
  import os
 
38
 
39
  MAX_LABELS = 40
40
  MAX_FEATURES = 20
@@ -268,7 +269,7 @@ def align_columns_and_show_prediction(
268
  gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
269
  ]
270
 
271
- hf_token = os.environ.get("HF_WRITE_TOKEN", default="")
272
 
273
  prediction_input, prediction_response = get_example_prediction(
274
  model_id, dataset_id, dataset_config, dataset_split, hf_token
 
35
  get_dataset_fetch_error_raw,
36
  )
37
  import os
38
+ from app_env import HF_WRITE_TOKEN
39
 
40
  MAX_LABELS = 40
41
  MAX_FEATURES = 20
 
269
  gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
270
  ]
271
 
272
+ hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
273
 
274
  prediction_input, prediction_response = get_example_prediction(
275
  model_id, dataset_id, dataset_config, dataset_split, hf_token