ZeroCommand commited on
Commit
4045dfc
·
1 Parent(s): 125b0cb

add suggested dataset

Browse files
app_leaderboard.py CHANGED
@@ -7,6 +7,7 @@ from fetch_utils import (check_dataset_and_get_config,
7
  check_dataset_and_get_split)
8
  from text_classification_ui_helpers import LEADERBOARD
9
 
 
10
 
11
  def get_records_from_dataset_repo(dataset_id):
12
  dataset_config = check_dataset_and_get_config(dataset_id)
@@ -74,7 +75,8 @@ def get_display_df(df):
74
 
75
 
76
  def get_demo():
77
- records = get_records_from_dataset_repo(LEADERBOARD)
 
78
 
79
  model_ids = get_model_ids(records)
80
  dataset_ids = get_dataset_ids(records)
@@ -124,6 +126,7 @@ def get_demo():
124
  outputs=[leaderboard_df],
125
  )
126
  def filter_table(model_id, dataset_id, columns, task):
 
127
  # filter the table based on task
128
  df = records[(records["task"] == task)]
129
  # filter the table based on the model_id and dataset_id
 
7
  check_dataset_and_get_split)
8
  from text_classification_ui_helpers import LEADERBOARD
9
 
10
+ import leaderboard
11
 
12
  def get_records_from_dataset_repo(dataset_id):
13
  dataset_config = check_dataset_and_get_config(dataset_id)
 
75
 
76
 
77
  def get_demo():
78
+ leaderboard.records = get_records_from_dataset_repo(LEADERBOARD)
79
+ records = leaderboard.records
80
 
81
  model_ids = get_model_ids(records)
82
  dataset_ids = get_dataset_ids(records)
 
126
  outputs=[leaderboard_df],
127
  )
128
  def filter_table(model_id, dataset_id, columns, task):
129
+ records = leaderboard.records
130
  # filter the table based on task
131
  df = records[(records["task"] == task)]
132
  # filter the table based on the model_id and dataset_id
app_text_classification.py CHANGED
@@ -4,6 +4,7 @@ import gradio as gr
4
 
5
  from io_utils import get_logs_file, read_scanners, write_scanners
6
  from text_classification_ui_helpers import (
 
7
  align_columns_and_show_prediction,
8
  check_dataset,
9
  deselect_run_inference,
@@ -34,10 +35,13 @@ def get_demo():
34
  placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
35
  )
36
 
37
- dataset_id_input = gr.Textbox(
38
- label="Hugging Face Dataset id",
39
- placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
40
- )
 
 
 
41
 
42
  with gr.Row():
43
  dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False, allow_custom_value=True)
@@ -149,6 +153,13 @@ def get_demo():
149
  outputs=[inference_token, run_inference],
150
  )
151
 
 
 
 
 
 
 
 
152
  gr.on(
153
  triggers=[label.change for label in column_mappings],
154
  fn=write_column_mapping_to_config,
 
4
 
5
  from io_utils import get_logs_file, read_scanners, write_scanners
6
  from text_classification_ui_helpers import (
7
+ get_related_datasets_from_leaderboard,
8
  align_columns_and_show_prediction,
9
  check_dataset,
10
  deselect_run_inference,
 
35
  placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
36
  )
37
 
38
+ with gr.Column():
39
+ no_dataset_checkbox = gr.Checkbox(label="Recommend a dataset", value=False, visible=True)
40
+
41
+ dataset_id_input = gr.Textbox(
42
+ label="Hugging Face Dataset id",
43
+ placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
44
+ )
45
 
46
  with gr.Row():
47
  dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False, allow_custom_value=True)
 
153
  outputs=[inference_token, run_inference],
154
  )
155
 
156
+ gr.on(
157
+ triggers=[model_id_input.change, no_dataset_checkbox.change],
158
+ fn=get_related_datasets_from_leaderboard,
159
+ inputs=[model_id_input, no_dataset_checkbox],
160
+ outputs=[dataset_id_input],
161
+ )
162
+
163
  gr.on(
164
  triggers=[label.change for label in column_mappings],
165
  fn=write_column_mapping_to_config,
leaderboard.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ import pandas as pd
2
+
3
+ records = pd.DataFrame()
text_classification_ui_helpers.py CHANGED
@@ -4,6 +4,7 @@ import logging
4
  import os
5
  import threading
6
  import uuid
 
7
 
8
  import datasets
9
  import gradio as gr
@@ -42,6 +43,17 @@ HF_GSK_HUB_HF_TOKEN = "GSK_HF_TOKEN"
42
  HF_GSK_HUB_UNLOCK_TOKEN = "GSK_HUB_UNLOCK_TOKEN"
43
 
44
  LEADERBOARD = "giskard-bot/evaluator-leaderboard"
 
 
 
 
 
 
 
 
 
 
 
45
 
46
 
47
  logger = logging.getLogger(__file__)
 
4
  import os
5
  import threading
6
  import uuid
7
+ import leaderboard
8
 
9
  import datasets
10
  import gradio as gr
 
43
  HF_GSK_HUB_UNLOCK_TOKEN = "GSK_HUB_UNLOCK_TOKEN"
44
 
45
  LEADERBOARD = "giskard-bot/evaluator-leaderboard"
46
+ def get_related_datasets_from_leaderboard(model_id, rec_dataset=False):
47
+ if not rec_dataset:
48
+ return gr.Textbox(placeholder="Please enter your dataset id.", visible=True)
49
+ records = leaderboard.records
50
+ model_records = records[records["model_id"] == model_id]
51
+ print(model_records)
52
+ datasets_unique = model_records["dataset_id"].unique()
53
+ print(datasets_unique)
54
+ if len(datasets_unique) == 0:
55
+ return gr.Textbox(placeholder="Sorry, we don't have recommendations for this model yet.", visible=True)
56
+ return gr.Textbox(label="Recommended Datasets", value=datasets_unique[0], visible=True)
57
 
58
 
59
  logger = logging.getLogger(__file__)