Spaces:
Running
Running
ZeroCommand
commited on
Commit
•
63bdb5b
1
Parent(s):
5b24f7d
GSK-2396 allow edit feature mapping and scan config
Browse files- app.py +46 -31
- scan_config.yaml +8 -0
- text_classification.py +33 -23
- utils.py +24 -0
app.py
CHANGED
@@ -11,13 +11,12 @@ import json
|
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
-
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
HF_SPACE_ID = 'SPACE_ID'
|
18 |
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
|
19 |
|
20 |
-
|
21 |
theme = gr.themes.Soft(
|
22 |
primary_hue="green",
|
23 |
)
|
@@ -70,6 +69,7 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
70 |
gr.update(visible=False), # Model prediction input
|
71 |
gr.update(visible=False), # Model prediction preview
|
72 |
gr.update(visible=False), # Label mapping preview
|
|
|
73 |
)
|
74 |
if isinstance(ppl, Exception):
|
75 |
gr.Warning(f'Failed to load model": {ppl}')
|
@@ -80,6 +80,7 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
80 |
gr.update(visible=False), # Model prediction input
|
81 |
gr.update(visible=False), # Model prediction preview
|
82 |
gr.update(visible=False), # Label mapping preview
|
|
|
83 |
)
|
84 |
|
85 |
# Validate dataset
|
@@ -105,7 +106,7 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
105 |
gr.update(visible=False), # Model prediction input
|
106 |
gr.update(visible=False), # Model prediction preview
|
107 |
gr.update(visible=False), # Label mapping preview
|
108 |
-
|
109 |
)
|
110 |
|
111 |
# TODO: Validate column mapping by running once
|
@@ -118,21 +119,21 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
118 |
except Exception:
|
119 |
column_mapping = {}
|
120 |
|
121 |
-
column_mapping, prediction_input, prediction_result, id2label_df = \
|
122 |
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)
|
123 |
|
124 |
column_mapping = json.dumps(column_mapping, indent=2)
|
125 |
|
126 |
-
if prediction_result is None:
|
127 |
gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.')
|
128 |
return (
|
129 |
gr.update(interactive=False), # Submit button
|
130 |
-
gr.update(visible=
|
131 |
-
gr.update(visible=
|
132 |
-
gr.update(visible=
|
133 |
gr.update(visible=False), # Model prediction preview
|
134 |
-
gr.update(visible=
|
135 |
-
|
136 |
)
|
137 |
elif id2label_df is None:
|
138 |
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
|
@@ -142,8 +143,8 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
142 |
gr.update(visible=True), # Preview row
|
143 |
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
144 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
145 |
-
gr.update(visible=
|
146 |
-
|
147 |
)
|
148 |
|
149 |
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
|
@@ -155,6 +156,7 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
155 |
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
156 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
157 |
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
|
|
158 |
)
|
159 |
|
160 |
|
@@ -180,6 +182,7 @@ def try_submit(m_id, d_id, config, split, column_mappings, local):
|
|
180 |
"--output_portal", "huggingface",
|
181 |
# TODO: "--feature_mapping", json.dumps(column_mapping),
|
182 |
"--label_mapping", json.dumps(label_mapping),
|
|
|
183 |
]
|
184 |
|
185 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
@@ -221,12 +224,14 @@ with gr.Blocks(theme=theme) as iface:
|
|
221 |
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
222 |
pass
|
223 |
|
224 |
-
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None):
|
225 |
column_mapping = '{}'
|
226 |
-
|
227 |
-
|
228 |
if id2label_mapping_dataframe is not None:
|
229 |
-
|
|
|
|
|
|
|
230 |
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
231 |
gr.Warning('Label mapping table has invalid contents. Please check again.')
|
232 |
return (gr.update(interactive=False),
|
@@ -234,18 +239,18 @@ with gr.Blocks(theme=theme) as iface:
|
|
234 |
gr.update(),
|
235 |
gr.update(),
|
236 |
gr.update(),
|
|
|
237 |
gr.update())
|
238 |
else:
|
239 |
if model_id and dataset_id and dataset_config and dataset_split:
|
240 |
-
return try_validate(
|
241 |
else:
|
242 |
-
del ppl
|
243 |
-
|
244 |
return (gr.update(interactive=False),
|
245 |
gr.update(visible=True),
|
246 |
gr.update(visible=False),
|
247 |
gr.update(visible=False),
|
248 |
gr.update(visible=False),
|
|
|
249 |
gr.update(visible=False))
|
250 |
with gr.Row():
|
251 |
gr.Markdown('''
|
@@ -256,6 +261,12 @@ with gr.Blocks(theme=theme) as iface:
|
|
256 |
''')
|
257 |
with gr.Row():
|
258 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
with gr.Row():
|
261 |
model_id_input = gr.Textbox(
|
@@ -279,11 +290,11 @@ with gr.Blocks(theme=theme) as iface:
|
|
279 |
|
280 |
with gr.Row(visible=True) as loading_row:
|
281 |
gr.Markdown('''
|
282 |
-
<
|
283 |
-
Please validate your model and dataset first...
|
284 |
-
</
|
285 |
''')
|
286 |
-
|
287 |
with gr.Row(visible=False) as preview_row:
|
288 |
gr.Markdown('''
|
289 |
<h1 style="text-align: center;">
|
@@ -294,7 +305,7 @@ with gr.Blocks(theme=theme) as iface:
|
|
294 |
|
295 |
with gr.Row():
|
296 |
id2label_mapping_dataframe = gr.DataFrame(label="Preview of label mapping", interactive=True, visible=False)
|
297 |
-
|
298 |
with gr.Row():
|
299 |
example_input = gr.Markdown('Sample Input: ', visible=False)
|
300 |
|
@@ -310,20 +321,24 @@ with gr.Blocks(theme=theme) as iface:
|
|
310 |
|
311 |
model_id_input.change(gate_validate_btn,
|
312 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
313 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
314 |
dataset_id_input.change(gate_validate_btn,
|
315 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
316 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
317 |
dataset_config_input.change(gate_validate_btn,
|
318 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
319 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
320 |
dataset_split_input.change(gate_validate_btn,
|
321 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
322 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
323 |
id2label_mapping_dataframe.input(gate_validate_btn,
|
324 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe],
|
325 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
326 |
-
|
|
|
|
|
|
|
|
|
327 |
run_btn.click(
|
328 |
try_submit,
|
329 |
inputs=[
|
|
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
+
from utils import read_scanners, write_scanners, convert_column_mapping_to_json
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
HF_SPACE_ID = 'SPACE_ID'
|
18 |
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
|
19 |
|
|
|
20 |
theme = gr.themes.Soft(
|
21 |
primary_hue="green",
|
22 |
)
|
|
|
69 |
gr.update(visible=False), # Model prediction input
|
70 |
gr.update(visible=False), # Model prediction preview
|
71 |
gr.update(visible=False), # Label mapping preview
|
72 |
+
gr.update(visible=False), # feature mapping preview
|
73 |
)
|
74 |
if isinstance(ppl, Exception):
|
75 |
gr.Warning(f'Failed to load model": {ppl}')
|
|
|
80 |
gr.update(visible=False), # Model prediction input
|
81 |
gr.update(visible=False), # Model prediction preview
|
82 |
gr.update(visible=False), # Label mapping preview
|
83 |
+
gr.update(visible=False), # feature mapping preview
|
84 |
)
|
85 |
|
86 |
# Validate dataset
|
|
|
106 |
gr.update(visible=False), # Model prediction input
|
107 |
gr.update(visible=False), # Model prediction preview
|
108 |
gr.update(visible=False), # Label mapping preview
|
109 |
+
gr.update(visible=False), # feature mapping preview
|
110 |
)
|
111 |
|
112 |
# TODO: Validate column mapping by running once
|
|
|
119 |
except Exception:
|
120 |
column_mapping = {}
|
121 |
|
122 |
+
column_mapping, prediction_input, prediction_result, id2label_df, feature_df = \
|
123 |
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)
|
124 |
|
125 |
column_mapping = json.dumps(column_mapping, indent=2)
|
126 |
|
127 |
+
if prediction_result is None and id2label_df is not None:
|
128 |
gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.')
|
129 |
return (
|
130 |
gr.update(interactive=False), # Submit button
|
131 |
+
gr.update(visible=False), # Loading row
|
132 |
+
gr.update(visible=True), # Preview row
|
133 |
+
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
134 |
gr.update(visible=False), # Model prediction preview
|
135 |
+
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
136 |
+
gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview
|
137 |
)
|
138 |
elif id2label_df is None:
|
139 |
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
|
|
|
143 |
gr.update(visible=True), # Preview row
|
144 |
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
145 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
146 |
+
gr.update(visible=True, interactive=True), # Label mapping preview
|
147 |
+
gr.update(visible=True, interactive=True), # feature mapping preview
|
148 |
)
|
149 |
|
150 |
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
|
|
|
156 |
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
157 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
158 |
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
159 |
+
gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview
|
160 |
)
|
161 |
|
162 |
|
|
|
182 |
"--output_portal", "huggingface",
|
183 |
# TODO: "--feature_mapping", json.dumps(column_mapping),
|
184 |
"--label_mapping", json.dumps(label_mapping),
|
185 |
+
"--scan_config", "./scan_config.yaml",
|
186 |
]
|
187 |
|
188 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
|
|
224 |
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
225 |
pass
|
226 |
|
227 |
+
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None, feature_mapping_dataframe=None):
|
228 |
column_mapping = '{}'
|
229 |
+
_, ppl = check_model(model_id=model_id)
|
|
|
230 |
if id2label_mapping_dataframe is not None:
|
231 |
+
labels = convert_column_mapping_to_json(id2label_mapping_dataframe.value, label="data")
|
232 |
+
features = convert_column_mapping_to_json(feature_mapping_dataframe.value, label="text")
|
233 |
+
column_mapping = json.dumps({**labels, **features}, indent=2)
|
234 |
+
print('229 >>>>> ', column_mapping)
|
235 |
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
236 |
gr.Warning('Label mapping table has invalid contents. Please check again.')
|
237 |
return (gr.update(interactive=False),
|
|
|
239 |
gr.update(),
|
240 |
gr.update(),
|
241 |
gr.update(),
|
242 |
+
gr.update(),
|
243 |
gr.update())
|
244 |
else:
|
245 |
if model_id and dataset_id and dataset_config and dataset_split:
|
246 |
+
return try_validate(model_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping)
|
247 |
else:
|
|
|
|
|
248 |
return (gr.update(interactive=False),
|
249 |
gr.update(visible=True),
|
250 |
gr.update(visible=False),
|
251 |
gr.update(visible=False),
|
252 |
gr.update(visible=False),
|
253 |
+
gr.update(visible=False),
|
254 |
gr.update(visible=False))
|
255 |
with gr.Row():
|
256 |
gr.Markdown('''
|
|
|
261 |
''')
|
262 |
with gr.Row():
|
263 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
264 |
+
run_inference = gr.Checkbox(value=False, label="Run with Inference API")
|
265 |
+
|
266 |
+
with gr.Row() as advanced_row:
|
267 |
+
selected = read_scanners('./scan_config.yaml')
|
268 |
+
scan_config = selected + ['data_leakage']
|
269 |
+
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
|
270 |
|
271 |
with gr.Row():
|
272 |
model_id_input = gr.Textbox(
|
|
|
290 |
|
291 |
with gr.Row(visible=True) as loading_row:
|
292 |
gr.Markdown('''
|
293 |
+
<p style="text-align: center;">
|
294 |
+
🚀🐢Please validate your model and dataset first...
|
295 |
+
</p>
|
296 |
''')
|
297 |
+
|
298 |
with gr.Row(visible=False) as preview_row:
|
299 |
gr.Markdown('''
|
300 |
<h1 style="text-align: center;">
|
|
|
305 |
|
306 |
with gr.Row():
|
307 |
id2label_mapping_dataframe = gr.DataFrame(label="Preview of label mapping", interactive=True, visible=False)
|
308 |
+
feature_mapping_dataframe = gr.DataFrame(label="Preview of feature mapping", interactive=True, visible=False)
|
309 |
with gr.Row():
|
310 |
example_input = gr.Markdown('Sample Input: ', visible=False)
|
311 |
|
|
|
321 |
|
322 |
model_id_input.change(gate_validate_btn,
|
323 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
324 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
325 |
dataset_id_input.change(gate_validate_btn,
|
326 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
327 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
328 |
dataset_config_input.change(gate_validate_btn,
|
329 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
330 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
331 |
dataset_split_input.change(gate_validate_btn,
|
332 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
333 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
334 |
id2label_mapping_dataframe.input(gate_validate_btn,
|
335 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
|
336 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
337 |
+
feature_mapping_dataframe.input(gate_validate_btn,
|
338 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
|
339 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
340 |
+
scanners.change(write_scanners, inputs=scanners)
|
341 |
+
|
342 |
run_btn.click(
|
343 |
try_submit,
|
344 |
inputs=[
|
scan_config.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
detectors:
|
2 |
+
- ethical_bias
|
3 |
+
- text_perturbation
|
4 |
+
- robustness
|
5 |
+
- performance
|
6 |
+
- underconfidence
|
7 |
+
- overconfidence
|
8 |
+
- spurious_correlation
|
text_classification.py
CHANGED
@@ -19,9 +19,8 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
19 |
continue
|
20 |
if len(feature.names) != len(id2label_mapping.keys()):
|
21 |
continue
|
22 |
-
|
23 |
dataset_labels = feature.names
|
24 |
-
|
25 |
# Try to match labels
|
26 |
for label in feature.names:
|
27 |
if label in id2label_mapping.keys():
|
@@ -31,6 +30,8 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
31 |
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
|
32 |
if model_label is not None:
|
33 |
id2label_mapping[model_label] = label
|
|
|
|
|
34 |
|
35 |
return id2label_mapping, dataset_labels
|
36 |
|
@@ -52,15 +53,15 @@ def check_column_mapping_keys_validity(column_mapping, ppl):
|
|
52 |
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
53 |
# We assume dataset is ok here
|
54 |
ds = datasets.load_dataset(d_id, config)[split]
|
55 |
-
|
56 |
try:
|
57 |
dataset_features = ds.features
|
58 |
except AttributeError:
|
59 |
# Dataset does not have features, need to provide everything
|
60 |
-
return None, None, None
|
61 |
-
|
62 |
# Check whether we need to infer the text input column
|
63 |
infer_text_input_column = True
|
|
|
64 |
if "text" in column_mapping.keys():
|
65 |
dataset_text_column = column_mapping["text"]
|
66 |
if dataset_text_column in dataset_features.keys():
|
@@ -71,12 +72,16 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
71 |
if infer_text_input_column:
|
72 |
# Try to retrieve one
|
73 |
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
|
|
|
|
|
|
|
|
|
74 |
if len(candidates) > 0:
|
75 |
logging.debug(f"Candidates are {candidates}")
|
76 |
column_mapping["text"] = candidates[0]
|
77 |
else:
|
78 |
# Not found a text feature
|
79 |
-
return column_mapping, None, None
|
80 |
|
81 |
# Load dataset as DataFrame
|
82 |
df = ds.to_pandas()
|
@@ -85,24 +90,14 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
85 |
id2label_mapping = {}
|
86 |
id2label = ppl.model.config.id2label
|
87 |
label2id = {v: k for k, v in id2label.items()}
|
88 |
-
prediction_input = None
|
89 |
-
prediction_result = None
|
90 |
-
try:
|
91 |
-
# Use the first item to test prediction
|
92 |
-
prediction_input = df.head(1).at[0, column_mapping["text"]]
|
93 |
-
results = ppl({"text": prediction_input}, top_k=None)
|
94 |
-
prediction_result = {
|
95 |
-
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
96 |
-
}
|
97 |
-
except Exception:
|
98 |
-
# Pipeline prediction failed, need to provide labels
|
99 |
-
return column_mapping, None, None
|
100 |
|
101 |
# Infer labels
|
102 |
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
103 |
id2label_mapping_dataset_model = {
|
104 |
v: k for k, v in id2label_mapping.items()
|
105 |
}
|
|
|
|
|
106 |
if "data" in column_mapping.keys():
|
107 |
if isinstance(column_mapping["data"], list):
|
108 |
# Use the column mapping passed by user
|
@@ -112,15 +107,30 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
112 |
column_mapping["label"] = {
|
113 |
i: None for i in id2label.keys()
|
114 |
}
|
115 |
-
return column_mapping,
|
116 |
|
117 |
-
prediction_result = {
|
118 |
-
f'[{label2id[result["label"]]}]{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result["score"] for result in results
|
119 |
-
}
|
120 |
id2label_df = pd.DataFrame({
|
121 |
"Dataset Labels": dataset_labels,
|
122 |
"Model Prediction Labels": [id2label_mapping_dataset_model[label] for label in dataset_labels],
|
123 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
if "data" not in column_mapping.keys():
|
126 |
# Column mapping should contain original model labels
|
@@ -128,4 +138,4 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
128 |
str(i): id2label_mapping_dataset_model[label] for i, label in zip(id2label.keys(), dataset_labels)
|
129 |
}
|
130 |
|
131 |
-
return column_mapping, prediction_input, prediction_result, id2label_df
|
|
|
19 |
continue
|
20 |
if len(feature.names) != len(id2label_mapping.keys()):
|
21 |
continue
|
22 |
+
|
23 |
dataset_labels = feature.names
|
|
|
24 |
# Try to match labels
|
25 |
for label in feature.names:
|
26 |
if label in id2label_mapping.keys():
|
|
|
30 |
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
|
31 |
if model_label is not None:
|
32 |
id2label_mapping[model_label] = label
|
33 |
+
else:
|
34 |
+
print(f"Label {label} is not found in model labels")
|
35 |
|
36 |
return id2label_mapping, dataset_labels
|
37 |
|
|
|
53 |
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
54 |
# We assume dataset is ok here
|
55 |
ds = datasets.load_dataset(d_id, config)[split]
|
|
|
56 |
try:
|
57 |
dataset_features = ds.features
|
58 |
except AttributeError:
|
59 |
# Dataset does not have features, need to provide everything
|
60 |
+
return None, None, None, None, None
|
61 |
+
|
62 |
# Check whether we need to infer the text input column
|
63 |
infer_text_input_column = True
|
64 |
+
feature_map_df = None
|
65 |
if "text" in column_mapping.keys():
|
66 |
dataset_text_column = column_mapping["text"]
|
67 |
if dataset_text_column in dataset_features.keys():
|
|
|
72 |
if infer_text_input_column:
|
73 |
# Try to retrieve one
|
74 |
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
|
75 |
+
feature_map_df = pd.DataFrame({
|
76 |
+
"Dataset Features": [candidates[0]],
|
77 |
+
"Model Input Features": ["text"]
|
78 |
+
})
|
79 |
if len(candidates) > 0:
|
80 |
logging.debug(f"Candidates are {candidates}")
|
81 |
column_mapping["text"] = candidates[0]
|
82 |
else:
|
83 |
# Not found a text feature
|
84 |
+
return column_mapping, None, None, feature_map_df
|
85 |
|
86 |
# Load dataset as DataFrame
|
87 |
df = ds.to_pandas()
|
|
|
90 |
id2label_mapping = {}
|
91 |
id2label = ppl.model.config.id2label
|
92 |
label2id = {v: k for k, v in id2label.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
# Infer labels
|
95 |
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
96 |
id2label_mapping_dataset_model = {
|
97 |
v: k for k, v in id2label_mapping.items()
|
98 |
}
|
99 |
+
|
100 |
+
# TODO: convert dataframe column mapping to json properly
|
101 |
if "data" in column_mapping.keys():
|
102 |
if isinstance(column_mapping["data"], list):
|
103 |
# Use the column mapping passed by user
|
|
|
107 |
column_mapping["label"] = {
|
108 |
i: None for i in id2label.keys()
|
109 |
}
|
110 |
+
return column_mapping, None, None, None, feature_map_df
|
111 |
|
|
|
|
|
|
|
112 |
id2label_df = pd.DataFrame({
|
113 |
"Dataset Labels": dataset_labels,
|
114 |
"Model Prediction Labels": [id2label_mapping_dataset_model[label] for label in dataset_labels],
|
115 |
})
|
116 |
+
|
117 |
+
prediction_input = None
|
118 |
+
prediction_result = None
|
119 |
+
try:
|
120 |
+
# Use the first item to test prediction
|
121 |
+
prediction_input = df.head(1).at[0, column_mapping["text"]]
|
122 |
+
results = ppl({"text": prediction_input}, top_k=None)
|
123 |
+
prediction_result = {
|
124 |
+
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
125 |
+
}
|
126 |
+
except Exception as e:
|
127 |
+
# Pipeline prediction failed, need to provide labels
|
128 |
+
print(e, '>>>> error')
|
129 |
+
return column_mapping, prediction_input, None, id2label_df, feature_map_df
|
130 |
+
|
131 |
+
prediction_result = {
|
132 |
+
f'[{label2id[result["label"]]}]{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result["score"] for result in results
|
133 |
+
}
|
134 |
|
135 |
if "data" not in column_mapping.keys():
|
136 |
# Column mapping should contain original model labels
|
|
|
138 |
str(i): id2label_mapping_dataset_model[label] for i, label in zip(id2label.keys(), dataset_labels)
|
139 |
}
|
140 |
|
141 |
+
return column_mapping, prediction_input, prediction_result, id2label_df, feature_map_df
|
utils.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import sys
|
3 |
+
# read scanners from yaml file
|
4 |
+
# return a list of scanners
|
5 |
+
def read_scanners(path):
|
6 |
+
scanners = []
|
7 |
+
with open(path, "r") as f:
|
8 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
9 |
+
scanners = config.get("detectors", None)
|
10 |
+
return scanners
|
11 |
+
|
12 |
+
# convert a list of scanners to yaml file
|
13 |
+
def write_scanners(scanners):
|
14 |
+
with open("./scan_config.yaml", "w") as f:
|
15 |
+
# save scanners to detectors in yaml
|
16 |
+
yaml.dump({"detectors": scanners}, f)
|
17 |
+
|
18 |
+
# convert column mapping dataframe to json
|
19 |
+
def convert_column_mapping_to_json(df, label=""):
|
20 |
+
column_mapping = {}
|
21 |
+
column_mapping[label] = []
|
22 |
+
for _, row in df.iterrows():
|
23 |
+
column_mapping[label].append(row.tolist())
|
24 |
+
return column_mapping
|