Spaces:
Sleeping
Sleeping
inoki-giskard
commited on
Commit
•
77961b6
1
Parent(s):
85095eb
Move text classification column mapping
Browse files- app.py +2 -110
- text_classification.py +112 -0
app.py
CHANGED
@@ -7,12 +7,11 @@ import time
|
|
7 |
from pathlib import Path
|
8 |
|
9 |
import json
|
10 |
-
import logging
|
11 |
-
|
12 |
-
import pandas as pd
|
13 |
|
14 |
from transformers.pipelines import TextClassificationPipeline
|
15 |
|
|
|
|
|
16 |
|
17 |
HF_REPO_ID = 'HF_REPO_ID'
|
18 |
HF_SPACE_ID = 'SPACE_ID'
|
@@ -61,113 +60,6 @@ def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
|
|
61 |
return dataset_id, dataset_config, dataset_split
|
62 |
|
63 |
|
64 |
-
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
65 |
-
for model_label in id2label_mapping.keys():
|
66 |
-
if model_label.upper() == label.upper():
|
67 |
-
return model_label, label
|
68 |
-
return None, label
|
69 |
-
|
70 |
-
|
71 |
-
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
|
72 |
-
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
|
73 |
-
dataset_labels = None
|
74 |
-
for feature in dataset_features.values():
|
75 |
-
if not isinstance(feature, datasets.ClassLabel):
|
76 |
-
continue
|
77 |
-
if len(feature.names) != len(id2label_mapping.keys()):
|
78 |
-
continue
|
79 |
-
|
80 |
-
dataset_labels = feature.names
|
81 |
-
|
82 |
-
# Try to match labels
|
83 |
-
for label in feature.names:
|
84 |
-
if label in id2label_mapping.keys():
|
85 |
-
model_label = label
|
86 |
-
else:
|
87 |
-
# Try to find case unsensative
|
88 |
-
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
|
89 |
-
if model_label is not None:
|
90 |
-
id2label_mapping[model_label] = label
|
91 |
-
|
92 |
-
return id2label_mapping, dataset_labels
|
93 |
-
|
94 |
-
|
95 |
-
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
96 |
-
# We assume dataset is ok here
|
97 |
-
ds = datasets.load_dataset(d_id, config)[split]
|
98 |
-
|
99 |
-
try:
|
100 |
-
dataset_features = ds.features
|
101 |
-
except AttributeError:
|
102 |
-
# Dataset does not have features, need to provide everything
|
103 |
-
return None, None, None
|
104 |
-
|
105 |
-
# Check whether we need to infer the text input column
|
106 |
-
infer_text_input_column = True
|
107 |
-
if "text" in column_mapping.keys():
|
108 |
-
dataset_text_column = column_mapping["text"]
|
109 |
-
if dataset_text_column in dataset_features.keys():
|
110 |
-
infer_text_input_column = False
|
111 |
-
else:
|
112 |
-
logging.warning(f"Provided {dataset_text_column} is not in Dataset columns")
|
113 |
-
|
114 |
-
if infer_text_input_column:
|
115 |
-
# Try to retrieve one
|
116 |
-
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
|
117 |
-
if len(candidates) > 0:
|
118 |
-
logging.debug(f"Candidates are {candidates}")
|
119 |
-
column_mapping["text"] = candidates[0]
|
120 |
-
else:
|
121 |
-
# Not found a text feature
|
122 |
-
return column_mapping, None, None
|
123 |
-
|
124 |
-
# Load dataset as DataFrame
|
125 |
-
df = ds.to_pandas()
|
126 |
-
|
127 |
-
# Retrieve all labels
|
128 |
-
id2label_mapping = {}
|
129 |
-
id2label = ppl.model.config.id2label
|
130 |
-
label2id = {v: k for k, v in id2label.items()}
|
131 |
-
prediction_result = None
|
132 |
-
try:
|
133 |
-
# Use the first item to test prediction
|
134 |
-
results = ppl({"text": df.head(1).at[0, column_mapping["text"]]}, top_k=None)
|
135 |
-
prediction_result = {
|
136 |
-
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
137 |
-
}
|
138 |
-
except Exception:
|
139 |
-
# Pipeline prediction failed, need to provide labels
|
140 |
-
return column_mapping, None, None
|
141 |
-
|
142 |
-
# Infer labels
|
143 |
-
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
144 |
-
if "label" in column_mapping.keys():
|
145 |
-
if not isinstance(column_mapping["label"], dict) or set(column_mapping["label"].values()) != set(dataset_labels):
|
146 |
-
logging.warning(f'Provided {column_mapping["label"]} does not match labels in Dataset')
|
147 |
-
return column_mapping, prediction_result, None
|
148 |
-
|
149 |
-
if isinstance(column_mapping["label"], dict):
|
150 |
-
for model_label in id2label_mapping.keys():
|
151 |
-
id2label_mapping[model_label] = column_mapping["label"][str(label2id[model_label])]
|
152 |
-
elif None in id2label_mapping.values():
|
153 |
-
column_mapping["label"] = {
|
154 |
-
i: None for i in id2label.keys()
|
155 |
-
}
|
156 |
-
return column_mapping, prediction_result, None
|
157 |
-
|
158 |
-
id2label_df = pd.DataFrame({
|
159 |
-
"ID": [i for i in id2label.keys()],
|
160 |
-
"Model labels": [id2label[label] for label in id2label.keys()],
|
161 |
-
"Dataset labels": [id2label_mapping[id2label[label]] for label in id2label.keys()],
|
162 |
-
})
|
163 |
-
if "label" not in column_mapping.keys():
|
164 |
-
column_mapping["label"] = {
|
165 |
-
i: id2label_mapping[id2label[i]] for i in id2label.keys()
|
166 |
-
}
|
167 |
-
|
168 |
-
return column_mapping, prediction_result, id2label_df
|
169 |
-
|
170 |
-
|
171 |
def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_mapping):
|
172 |
# Validate model
|
173 |
m_id, ppl = check_model(model_id=model_id)
|
|
|
7 |
from pathlib import Path
|
8 |
|
9 |
import json
|
|
|
|
|
|
|
10 |
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
+
from text_classification import text_classification_fix_column_mapping
|
14 |
+
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
HF_SPACE_ID = 'SPACE_ID'
|
|
|
60 |
return dataset_id, dataset_config, dataset_split
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_mapping):
|
64 |
# Validate model
|
65 |
m_id, ppl = check_model(model_id=model_id)
|
text_classification.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
|
3 |
+
import logging
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
9 |
+
for model_label in id2label_mapping.keys():
|
10 |
+
if model_label.upper() == label.upper():
|
11 |
+
return model_label, label
|
12 |
+
return None, label
|
13 |
+
|
14 |
+
|
15 |
+
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
|
16 |
+
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
|
17 |
+
dataset_labels = None
|
18 |
+
for feature in dataset_features.values():
|
19 |
+
if not isinstance(feature, datasets.ClassLabel):
|
20 |
+
continue
|
21 |
+
if len(feature.names) != len(id2label_mapping.keys()):
|
22 |
+
continue
|
23 |
+
|
24 |
+
dataset_labels = feature.names
|
25 |
+
|
26 |
+
# Try to match labels
|
27 |
+
for label in feature.names:
|
28 |
+
if label in id2label_mapping.keys():
|
29 |
+
model_label = label
|
30 |
+
else:
|
31 |
+
# Try to find case unsensative
|
32 |
+
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
|
33 |
+
if model_label is not None:
|
34 |
+
id2label_mapping[model_label] = label
|
35 |
+
|
36 |
+
return id2label_mapping, dataset_labels
|
37 |
+
|
38 |
+
|
39 |
+
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
40 |
+
# We assume dataset is ok here
|
41 |
+
ds = datasets.load_dataset(d_id, config)[split]
|
42 |
+
|
43 |
+
try:
|
44 |
+
dataset_features = ds.features
|
45 |
+
except AttributeError:
|
46 |
+
# Dataset does not have features, need to provide everything
|
47 |
+
return None, None, None
|
48 |
+
|
49 |
+
# Check whether we need to infer the text input column
|
50 |
+
infer_text_input_column = True
|
51 |
+
if "text" in column_mapping.keys():
|
52 |
+
dataset_text_column = column_mapping["text"]
|
53 |
+
if dataset_text_column in dataset_features.keys():
|
54 |
+
infer_text_input_column = False
|
55 |
+
else:
|
56 |
+
logging.warning(f"Provided {dataset_text_column} is not in Dataset columns")
|
57 |
+
|
58 |
+
if infer_text_input_column:
|
59 |
+
# Try to retrieve one
|
60 |
+
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
|
61 |
+
if len(candidates) > 0:
|
62 |
+
logging.debug(f"Candidates are {candidates}")
|
63 |
+
column_mapping["text"] = candidates[0]
|
64 |
+
else:
|
65 |
+
# Not found a text feature
|
66 |
+
return column_mapping, None, None
|
67 |
+
|
68 |
+
# Load dataset as DataFrame
|
69 |
+
df = ds.to_pandas()
|
70 |
+
|
71 |
+
# Retrieve all labels
|
72 |
+
id2label_mapping = {}
|
73 |
+
id2label = ppl.model.config.id2label
|
74 |
+
label2id = {v: k for k, v in id2label.items()}
|
75 |
+
prediction_result = None
|
76 |
+
try:
|
77 |
+
# Use the first item to test prediction
|
78 |
+
results = ppl({"text": df.head(1).at[0, column_mapping["text"]]}, top_k=None)
|
79 |
+
prediction_result = {
|
80 |
+
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
81 |
+
}
|
82 |
+
except Exception:
|
83 |
+
# Pipeline prediction failed, need to provide labels
|
84 |
+
return column_mapping, None, None
|
85 |
+
|
86 |
+
# Infer labels
|
87 |
+
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
88 |
+
if "label" in column_mapping.keys():
|
89 |
+
if not isinstance(column_mapping["label"], dict) or set(column_mapping["label"].values()) != set(dataset_labels):
|
90 |
+
logging.warning(f'Provided {column_mapping["label"]} does not match labels in Dataset')
|
91 |
+
return column_mapping, prediction_result, None
|
92 |
+
|
93 |
+
if isinstance(column_mapping["label"], dict):
|
94 |
+
for model_label in id2label_mapping.keys():
|
95 |
+
id2label_mapping[model_label] = column_mapping["label"][str(label2id[model_label])]
|
96 |
+
elif None in id2label_mapping.values():
|
97 |
+
column_mapping["label"] = {
|
98 |
+
i: None for i in id2label.keys()
|
99 |
+
}
|
100 |
+
return column_mapping, prediction_result, None
|
101 |
+
|
102 |
+
id2label_df = pd.DataFrame({
|
103 |
+
"ID": [i for i in id2label.keys()],
|
104 |
+
"Model labels": [id2label[label] for label in id2label.keys()],
|
105 |
+
"Dataset labels": [id2label_mapping[id2label[label]] for label in id2label.keys()],
|
106 |
+
})
|
107 |
+
if "label" not in column_mapping.keys():
|
108 |
+
column_mapping["label"] = {
|
109 |
+
i: id2label_mapping[id2label[i]] for i in id2label.keys()
|
110 |
+
}
|
111 |
+
|
112 |
+
return column_mapping, prediction_result, id2label_df
|