Spaces:
Running
Running
ZeroCommand
commited on
Commit
•
cbb886a
1
Parent(s):
9e4233f
add leaderboard ui and refactor code
Browse files- app.py +6 -4
- app_leaderboard.py +95 -0
- app_legacy.py +1 -1
- app_text_classification.py +8 -4
- fetch_utils.py +23 -0
- utils.py → io_utils.py +9 -10
app.py
CHANGED
@@ -5,11 +5,13 @@
|
|
5 |
import gradio as gr
|
6 |
|
7 |
from app_text_classification import get_demo as get_demo_text_classification
|
8 |
-
|
9 |
|
10 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
11 |
with gr.Tab("Text Classification"):
|
12 |
get_demo_text_classification()
|
13 |
-
with gr.Tab("Leaderboard
|
14 |
-
|
15 |
-
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
|
7 |
from app_text_classification import get_demo as get_demo_text_classification
|
8 |
+
from app_leaderboard import get_demo as get_demo_leaderboard
|
9 |
|
10 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
11 |
with gr.Tab("Text Classification"):
|
12 |
get_demo_text_classification()
|
13 |
+
with gr.Tab("Leaderboard"):
|
14 |
+
get_demo_leaderboard()
|
15 |
+
|
16 |
+
demo.queue(max_size=100)
|
17 |
+
demo.launch(share=False)
|
app_leaderboard.py
CHANGED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import datasets
|
3 |
+
import logging
|
4 |
+
from fetch_utils import check_dataset_and_get_config, check_dataset_and_get_split
|
5 |
+
|
6 |
+
def get_records_from_dataset_repo(dataset_id):
|
7 |
+
dataset_config = check_dataset_and_get_config(dataset_id)
|
8 |
+
logging.info(f"Dataset {dataset_id} has configs {dataset_config}")
|
9 |
+
dataset_split = check_dataset_and_get_split(dataset_id, dataset_config[0])
|
10 |
+
logging.info(f"Dataset {dataset_id} has splits {dataset_split}")
|
11 |
+
try:
|
12 |
+
ds = datasets.load_dataset(dataset_id, dataset_config[0])[dataset_split[0]]
|
13 |
+
df = ds.to_pandas()
|
14 |
+
return df
|
15 |
+
except Exception as e:
|
16 |
+
logging.warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
17 |
+
return None
|
18 |
+
|
19 |
+
def get_model_ids(ds):
|
20 |
+
logging.info(f"Dataset {ds} column names: {ds['model_id']}")
|
21 |
+
models = ds['model_id'].tolist()
|
22 |
+
# return unique elements in the list model_ids
|
23 |
+
model_ids = list(set(models))
|
24 |
+
return model_ids
|
25 |
+
|
26 |
+
def get_dataset_ids(ds):
|
27 |
+
logging.info(f"Dataset {ds} column names: {ds['dataset_id']}")
|
28 |
+
datasets = ds['dataset_id'].tolist()
|
29 |
+
dataset_ids = list(set(datasets))
|
30 |
+
return dataset_ids
|
31 |
+
|
32 |
+
def get_types(ds):
|
33 |
+
# set all types for each column
|
34 |
+
types = [str(t) for t in ds.dtypes.to_list()]
|
35 |
+
types = [t.replace('object', 'markdown') for t in types]
|
36 |
+
types = [t.replace('float64', 'number') for t in types]
|
37 |
+
types = [t.replace('int64', 'number') for t in types]
|
38 |
+
return types
|
39 |
+
|
40 |
+
def get_display_df(df):
|
41 |
+
# style all elements in the model_id column
|
42 |
+
display_df = df.copy()
|
43 |
+
if display_df['model_id'].any():
|
44 |
+
display_df['model_id'] = display_df['model_id'].apply(lambda x: f'<p href="https://huggingface.co/{x}" style="color:blue">🔗{x}</p>')
|
45 |
+
# style all elements in the dataset_id column
|
46 |
+
if display_df['dataset_id'].any():
|
47 |
+
display_df['dataset_id'] = display_df['dataset_id'].apply(lambda x: f'<p href="https://huggingface.co/datasets/{x}" style="color:blue">🔗{x}</p>')
|
48 |
+
# style all elements in the report_link column
|
49 |
+
if display_df['report_link'].any():
|
50 |
+
display_df['report_link'] = display_df['report_link'].apply(lambda x: f'<p href="{x}" style="color:blue">🔗{x}</p>')
|
51 |
+
return display_df
|
52 |
+
|
53 |
+
def get_demo():
|
54 |
+
records = get_records_from_dataset_repo('ZeroCommand/test-giskard-report')
|
55 |
+
|
56 |
+
model_ids = get_model_ids(records)
|
57 |
+
dataset_ids = get_dataset_ids(records)
|
58 |
+
|
59 |
+
column_names = records.columns.tolist()
|
60 |
+
default_columns = ['model_id', 'dataset_id', 'total_issue', 'report_link']
|
61 |
+
# set the default columns to show
|
62 |
+
default_df = records[default_columns]
|
63 |
+
types = get_types(default_df)
|
64 |
+
display_df = get_display_df(default_df)
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
task_select = gr.Dropdown(label='Task', choices=['text_classification', 'tabular'], value='text_classification', interactive=True)
|
68 |
+
model_select = gr.Dropdown(label='Model id', choices=model_ids, interactive=True)
|
69 |
+
dataset_select = gr.Dropdown(label='Dataset id', choices=dataset_ids, interactive=True)
|
70 |
+
|
71 |
+
with gr.Row():
|
72 |
+
columns_select = gr.CheckboxGroup(label='Show columns', choices=column_names, value=default_columns, interactive=True)
|
73 |
+
|
74 |
+
with gr.Row():
|
75 |
+
leaderboard_df = gr.DataFrame(display_df, datatype=types, interactive=False)
|
76 |
+
|
77 |
+
@gr.on(triggers=[model_select.change, dataset_select.change, columns_select.change, task_select.change],
|
78 |
+
inputs=[model_select, dataset_select, columns_select, task_select],
|
79 |
+
outputs=[leaderboard_df])
|
80 |
+
def filter_table(model_id, dataset_id, columns, task):
|
81 |
+
# filter the table based on task
|
82 |
+
df = records[(records['hf_pipeline_type'] == task)]
|
83 |
+
# filter the table based on the model_id and dataset_id
|
84 |
+
if model_id:
|
85 |
+
df = records[(records['model_id'] == model_id)]
|
86 |
+
if dataset_id:
|
87 |
+
df = records[(records['dataset_id'] == dataset_id)]
|
88 |
+
|
89 |
+
# filter the table based on the columns
|
90 |
+
df = df[columns]
|
91 |
+
types = get_types(df)
|
92 |
+
display_df = get_display_df(df)
|
93 |
+
return (
|
94 |
+
gr.update(value=display_df, datatype=types, interactive=False)
|
95 |
+
)
|
app_legacy.py
CHANGED
@@ -11,7 +11,7 @@ import json
|
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
-
from
|
15 |
from wordings import CONFIRM_MAPPING_DETAILS_MD, CONFIRM_MAPPING_DETAILS_FAIL_MD
|
16 |
|
17 |
HF_REPO_ID = 'HF_REPO_ID'
|
|
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
+
from io_utils import read_scanners, write_scanners, read_inference_type, write_inference_type, convert_column_mapping_to_json
|
15 |
from wordings import CONFIRM_MAPPING_DETAILS_MD, CONFIRM_MAPPING_DETAILS_FAIL_MD
|
16 |
|
17 |
HF_REPO_ID = 'HF_REPO_ID'
|
app_text_classification.py
CHANGED
@@ -9,9 +9,9 @@ import json
|
|
9 |
|
10 |
from transformers.pipelines import TextClassificationPipeline
|
11 |
|
12 |
-
from text_classification import get_labels_and_features_from_dataset, check_model, get_example_prediction
|
13 |
-
from
|
14 |
-
from wordings import CONFIRM_MAPPING_DETAILS_MD,
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
HF_SPACE_ID = 'SPACE_ID'
|
@@ -222,7 +222,11 @@ def get_demo():
|
|
222 |
check_dataset_and_get_split,
|
223 |
inputs=[dataset_id_input, dataset_config_input],
|
224 |
outputs=[dataset_split_input])
|
225 |
-
|
|
|
|
|
|
|
|
|
226 |
gr.on(
|
227 |
triggers=[
|
228 |
run_btn.click,
|
|
|
9 |
|
10 |
from transformers.pipelines import TextClassificationPipeline
|
11 |
|
12 |
+
from text_classification import get_labels_and_features_from_dataset, check_model, get_example_prediction
|
13 |
+
from io_utils import read_scanners, write_scanners, read_inference_type, read_column_mapping, write_column_mapping, write_inference_type
|
14 |
+
from wordings import CONFIRM_MAPPING_DETAILS_MD, CONFIRM_MAPPING_DETAILS_FAIL_RAW
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
HF_SPACE_ID = 'SPACE_ID'
|
|
|
222 |
check_dataset_and_get_split,
|
223 |
inputs=[dataset_id_input, dataset_config_input],
|
224 |
outputs=[dataset_split_input])
|
225 |
+
|
226 |
+
run_inference.change(
|
227 |
+
write_inference_type,
|
228 |
+
inputs=[run_inference]
|
229 |
+
)
|
230 |
gr.on(
|
231 |
triggers=[
|
232 |
run_btn.click,
|
fetch_utils.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import huggingface_hub
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
def check_dataset_and_get_config(dataset_id):
|
5 |
+
try:
|
6 |
+
configs = datasets.get_dataset_config_names(dataset_id)
|
7 |
+
return configs
|
8 |
+
except Exception:
|
9 |
+
# Dataset may not exist
|
10 |
+
return None
|
11 |
+
|
12 |
+
def check_dataset_and_get_split(dataset_id, dataset_config):
|
13 |
+
try:
|
14 |
+
ds = datasets.load_dataset(dataset_id, dataset_config)
|
15 |
+
except Exception:
|
16 |
+
# Dataset may not exist
|
17 |
+
return None
|
18 |
+
try:
|
19 |
+
splits = list(ds.keys())
|
20 |
+
return splits
|
21 |
+
except Exception:
|
22 |
+
# Dataset has no splits
|
23 |
+
return None
|
utils.py → io_utils.py
RENAMED
@@ -17,13 +17,13 @@ def read_scanners(path):
|
|
17 |
|
18 |
# convert a list of scanners to yaml file
|
19 |
def write_scanners(scanners):
|
20 |
-
|
|
|
21 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
yaml.dump(config, f, Dumper=Dumper)
|
27 |
|
28 |
# read model_type from yaml file
|
29 |
def read_inference_type(path):
|
@@ -35,15 +35,14 @@ def read_inference_type(path):
|
|
35 |
|
36 |
# write model_type to yaml file
|
37 |
def write_inference_type(use_inference):
|
38 |
-
with open(YAML_PATH, "r") as f:
|
39 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
40 |
if use_inference:
|
41 |
config["inference_type"] = 'hf_inference_api'
|
42 |
else:
|
43 |
config["inference_type"] = 'hf_pipeline'
|
44 |
-
|
45 |
-
|
46 |
-
yaml.dump(config, f, Dumper=Dumper)
|
47 |
|
48 |
# read column mapping from yaml file
|
49 |
def read_column_mapping(path):
|
|
|
17 |
|
18 |
# convert a list of scanners to yaml file
|
19 |
def write_scanners(scanners):
|
20 |
+
print(scanners)
|
21 |
+
with open(YAML_PATH, "r+") as f:
|
22 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
23 |
+
if config:
|
24 |
+
config["detectors"] = scanners
|
25 |
+
# save scanners to detectors in yaml
|
26 |
+
yaml.dump(config, f, Dumper=Dumper)
|
|
|
27 |
|
28 |
# read model_type from yaml file
|
29 |
def read_inference_type(path):
|
|
|
35 |
|
36 |
# write model_type to yaml file
|
37 |
def write_inference_type(use_inference):
|
38 |
+
with open(YAML_PATH, "r+") as f:
|
39 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
40 |
if use_inference:
|
41 |
config["inference_type"] = 'hf_inference_api'
|
42 |
else:
|
43 |
config["inference_type"] = 'hf_pipeline'
|
44 |
+
# save inference_type to inference_type in yaml
|
45 |
+
yaml.dump(config, f, Dumper=Dumper)
|
|
|
46 |
|
47 |
# read column mapping from yaml file
|
48 |
def read_column_mapping(path):
|