import gradio as gr import datasets import huggingface_hub import os import time import subprocess import logging import json from transformers.pipelines import TextClassificationPipeline from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping from utils import read_scanners, write_scanners, read_inference_type, write_inference_type, convert_column_mapping_to_json HF_REPO_ID = 'HF_REPO_ID' HF_SPACE_ID = 'SPACE_ID' HF_WRITE_TOKEN = 'HF_WRITE_TOKEN' theme = gr.themes.Soft( primary_hue="green", ) def check_model(model_id): try: task = huggingface_hub.model_info(model_id).pipeline_tag except Exception: return None, None try: from transformers import pipeline ppl = pipeline(task=task, model=model_id) return model_id, ppl except Exception as e: return model_id, e def check_dataset(dataset_id, dataset_config="default", dataset_split="test"): try: configs = datasets.get_dataset_config_names(dataset_id) except Exception: # Dataset may not exist return None, dataset_config, dataset_split if dataset_config not in configs: # Need to choose dataset subset (config) return dataset_id, configs, dataset_split ds = datasets.load_dataset(dataset_id, dataset_config) if isinstance(ds, datasets.DatasetDict): # Need to choose dataset split if dataset_split not in ds.keys(): return dataset_id, None, list(ds.keys()) elif not isinstance(ds, datasets.Dataset): # Unknown type return dataset_id, None, None return dataset_id, dataset_config, dataset_split def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping='{}'): # Validate model if m_id is None: gr.Warning('Model is not accessible. Please set your HF_TOKEN if it is a private model.') return ( gr.update(interactive=False), # Submit button gr.update(visible=True), # Loading row gr.update(visible=False), # Preview row gr.update(visible=False), # Model prediction input gr.update(visible=False), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(visible=False), # feature mapping preview ) if isinstance(ppl, Exception): gr.Warning(f'Failed to load model": {ppl}') return ( gr.update(interactive=False), # Submit button gr.update(visible=True), # Loading row gr.update(visible=False), # Preview row gr.update(visible=False), # Model prediction input gr.update(visible=False), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(visible=False), # feature mapping preview ) # Validate dataset d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split) dataset_ok = False if d_id is None: gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.') elif isinstance(config, list): gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.') config = gr.update(choices=config, value=config[0]) elif isinstance(split, list): gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.') split = gr.update(choices=split, value=split[0]) else: dataset_ok = True if not dataset_ok: return ( gr.update(interactive=False), # Submit button gr.update(visible=True), # Loading row gr.update(visible=False), # Preview row gr.update(visible=False), # Model prediction input gr.update(visible=False), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(visible=False), # feature mapping preview ) # TODO: Validate column mapping by running once prediction_result = None id2label_df = None if isinstance(ppl, TextClassificationPipeline): try: print('validating phase, ', column_mapping) column_mapping = json.loads(column_mapping) except Exception: column_mapping = {} column_mapping, prediction_input, prediction_result, id2label_df, feature_df = \ text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split) column_mapping = json.dumps(column_mapping, indent=2) if prediction_result is None and id2label_df is not None: gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.') return ( gr.update(interactive=False), # Submit button gr.update(visible=False), # Loading row gr.update(visible=True), # Preview row gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input gr.update(visible=False), # Model prediction preview gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview ) elif id2label_df is None: gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.') return ( gr.update(interactive=False), # Submit button gr.update(visible=False), # Loading row gr.update(visible=True), # Preview row gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input gr.update(value=prediction_result, visible=True), # Model prediction preview gr.update(visible=True, interactive=True), # Label mapping preview gr.update(visible=True, interactive=True), # feature mapping preview ) gr.Info("Model and dataset validations passed. Your can submit the evaluation task.") return ( gr.update(interactive=True), # Submit button gr.update(visible=False), # Loading row gr.update(visible=True), # Preview row gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input gr.update(value=prediction_result, visible=True), # Model prediction preview gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview ) def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_mapping_dataframe, local): label_mapping = {} for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items(): label_mapping.update({str(i): label}) feature_mapping = {} for i, feature in feature_mapping_dataframe["Dataset Features"].items(): feature_mapping.update({feature_mapping_dataframe["Model Input Features"][i]: feature}) # TODO: Set column mapping for some dataset such as `amazon_polarity` if local: command = [ "python", "cli.py", "--loader", "huggingface", "--model", m_id, "--dataset", d_id, "--dataset_config", config, "--dataset_split", split, "--hf_token", os.environ.get(HF_WRITE_TOKEN), "--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID), "--output_format", "markdown", "--output_portal", "huggingface", "--feature_mapping", json.dumps(feature_mapping), "--label_mapping", json.dumps(label_mapping), "--scan_config", "./config.yaml", ] eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>" start = time.time() logging.info(f"Start local evaluation on {eval_str}") evaluator = subprocess.Popen( command, cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"), stderr=subprocess.STDOUT, ) result = evaluator.wait() logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s") gr.Info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s") else: gr.Info("TODO: Submit task to an endpoint") return gr.update(interactive=True) # Submit button with gr.Blocks(theme=theme) as iface: with gr.Tab("Text Classification"): def check_dataset_and_get_config(dataset_id): try: configs = datasets.get_dataset_config_names(dataset_id) return gr.Dropdown(configs, value=configs[0], visible=True) except Exception: # Dataset may not exist pass def check_dataset_and_get_split(dataset_config, dataset_id): try: splits = list(datasets.load_dataset(dataset_id, dataset_config).keys()) return gr.Dropdown(splits, value=splits[0], visible=True) except Exception as e: # Dataset may not exist gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}") pass def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None, feature_mapping_dataframe=None): column_mapping = '{}' _, ppl = check_model(model_id=model_id) if id2label_mapping_dataframe is not None: labels = convert_column_mapping_to_json(id2label_mapping_dataframe.value, label="data") features = convert_column_mapping_to_json(feature_mapping_dataframe.value, label="text") column_mapping = json.dumps({**labels, **features}, indent=2) if check_column_mapping_keys_validity(column_mapping, ppl) is False: gr.Warning('Label mapping table has invalid contents. Please check again.') return (gr.update(interactive=False), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()) else: if model_id and dataset_id and dataset_config and dataset_split: return try_validate(model_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping) else: return (gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)) with gr.Row(): gr.Markdown('''
🚀🐢Please validate your model and dataset first...
''') with gr.Row(visible=False) as preview_row: gr.Markdown('''