import json import logging import os import subprocess import time import datasets import gradio as gr import huggingface_hub from transformers.pipelines import TextClassificationPipeline from io_utils import ( convert_column_mapping_to_json, read_inference_type, read_scanners, write_inference_type, write_scanners, ) from text_classification import ( check_column_mapping_keys_validity, text_classification_fix_column_mapping, ) from wordings import CONFIRM_MAPPING_DETAILS_FAIL_MD, CONFIRM_MAPPING_DETAILS_MD HF_REPO_ID = "HF_REPO_ID" HF_SPACE_ID = "SPACE_ID" HF_WRITE_TOKEN = "HF_WRITE_TOKEN" def check_model(model_id): try: task = huggingface_hub.model_info(model_id).pipeline_tag except Exception: return None, None try: from transformers import pipeline ppl = pipeline(task=task, model=model_id) return model_id, ppl except Exception as e: return model_id, e def check_dataset(dataset_id, dataset_config="default", dataset_split="test"): try: configs = datasets.get_dataset_config_names(dataset_id) except Exception: # Dataset may not exist return None, dataset_config, dataset_split if dataset_config not in configs: # Need to choose dataset subset (config) return dataset_id, configs, dataset_split ds = datasets.load_dataset(dataset_id, dataset_config) if isinstance(ds, datasets.DatasetDict): # Need to choose dataset split if dataset_split not in ds.keys(): return dataset_id, None, list(ds.keys()) elif not isinstance(ds, datasets.Dataset): # Unknown type return dataset_id, None, None return dataset_id, dataset_config, dataset_split def try_validate( m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping="{}" ): # Validate model if m_id is None: gr.Warning( "Model is not accessible. Please set your HF_TOKEN if it is a private model." ) return ( gr.update(interactive=False), # Submit button gr.update(visible=True), # Loading row gr.update(visible=False), # Preview row gr.update(visible=False), # Model prediction input gr.update(visible=False), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(visible=False), # feature mapping preview ) if isinstance(ppl, Exception): gr.Warning(f'Failed to load model": {ppl}') return ( gr.update(interactive=False), # Submit button gr.update(visible=True), # Loading row gr.update(visible=False), # Preview row gr.update(visible=False), # Model prediction input gr.update(visible=False), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(visible=False), # feature mapping preview ) # Validate dataset d_id, config, split = check_dataset( dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split, ) dataset_ok = False if d_id is None: gr.Warning( f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.' ) elif isinstance(config, list): gr.Warning( f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.' ) config = gr.update(choices=config, value=config[0]) elif isinstance(split, list): gr.Warning( f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.' ) split = gr.update(choices=split, value=split[0]) else: dataset_ok = True if not dataset_ok: return ( gr.update(interactive=False), # Submit button gr.update(visible=True), # Loading row gr.update(visible=False), # Preview row gr.update(visible=False), # Model prediction input gr.update(visible=False), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(visible=False), # feature mapping preview ) # TODO: Validate column mapping by running once prediction_result = None id2label_df = None if isinstance(ppl, TextClassificationPipeline): try: column_mapping = json.loads(column_mapping) except Exception: column_mapping = {} ( column_mapping, prediction_input, prediction_result, id2label_df, feature_df, ) = text_classification_fix_column_mapping( column_mapping, ppl, d_id, config, split ) column_mapping = json.dumps(column_mapping, indent=2) if prediction_result is None and id2label_df is not None: gr.Warning( 'The model failed to predict with the first row in the dataset. Please provide feature mappings in "Advance" settings.' ) return ( gr.update(interactive=False), # Submit button gr.update(visible=False), # Loading row gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row gr.update( value=f"**Sample Input**: {prediction_input}", visible=True ), # Model prediction input gr.update(visible=False), # Model prediction preview gr.update( value=id2label_df, visible=True, interactive=True ), # Label mapping preview gr.update( value=feature_df, visible=True, interactive=True ), # feature mapping preview ) elif id2label_df is None: gr.Warning( 'The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.' ) return ( gr.update(interactive=False), # Submit button gr.update(visible=False), # Loading row gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row gr.update( value=f"**Sample Input**: {prediction_input}", visible=True ), # Model prediction input gr.update( value=prediction_result, visible=True ), # Model prediction preview gr.update(visible=True, interactive=True), # Label mapping preview gr.update(visible=True, interactive=True), # feature mapping preview ) gr.Info( "Model and dataset validations passed. Your can submit the evaluation task." ) return ( gr.update(interactive=True), # Submit button gr.update(visible=False), # Loading row gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row gr.update( value=f"**Sample Input**: {prediction_input}", visible=True ), # Model prediction input gr.update(value=prediction_result, visible=True), # Model prediction preview gr.update( value=id2label_df, visible=True, interactive=True ), # Label mapping preview gr.update( value=feature_df, visible=True, interactive=True ), # feature mapping preview ) def try_submit( m_id, d_id, config, split, id2label_mapping_dataframe, feature_mapping_dataframe, local, ): label_mapping = {} for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items(): label_mapping.update({str(i): label}) feature_mapping = {} for i, feature in feature_mapping_dataframe["Dataset Features"].items(): feature_mapping.update( {feature_mapping_dataframe["Model Input Features"][i]: feature} ) # TODO: Set column mapping for some dataset such as `amazon_polarity` if local: command = [ "giskard_scanner", "--loader", "huggingface", "--model", m_id, "--dataset", d_id, "--dataset_config", config, "--dataset_split", split, "--hf_token", os.environ.get(HF_WRITE_TOKEN), "--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID), "--output_format", "markdown", "--output_portal", "huggingface", "--feature_mapping", json.dumps(feature_mapping), "--label_mapping", json.dumps(label_mapping), "--scan_config", "../config.yaml", ] eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>" start = time.time() logging.info(f"Start local evaluation on {eval_str}") evaluator = subprocess.Popen( command, stderr=subprocess.STDOUT, ) result = evaluator.wait() logging.info( f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s" ) gr.Info( f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s" ) else: gr.Info("TODO: Submit task to an endpoint") return gr.update(interactive=True) # Submit button def get_demo(): # gr.themes.Soft( # primary_hue="green", # ) def check_dataset_and_get_config(dataset_id): try: configs = datasets.get_dataset_config_names(dataset_id) return gr.Dropdown(configs, value=configs[0], visible=True) except Exception: # Dataset may not exist pass def check_dataset_and_get_split(dataset_config, dataset_id): try: splits = list(datasets.load_dataset(dataset_id, dataset_config).keys()) return gr.Dropdown(splits, value=splits[0], visible=True) except Exception as e: # Dataset may not exist gr.Warning( f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}" ) def clear_column_mapping_tables(): return [ gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True), gr.update(value=[], visible=False, interactive=True), gr.update(value=[], visible=False, interactive=True), ] def gate_validate_btn( model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None, feature_mapping_dataframe=None, ): column_mapping = "{}" _, ppl = check_model(model_id=model_id) if id2label_mapping_dataframe is not None: labels = convert_column_mapping_to_json( id2label_mapping_dataframe.value, label="data" ) features = convert_column_mapping_to_json( feature_mapping_dataframe.value, label="text" ) column_mapping = json.dumps({**labels, **features}, indent=2) if check_column_mapping_keys_validity(column_mapping, ppl) is False: gr.Warning("Label mapping table has invalid contents. Please check again.") return ( gr.update(interactive=False), gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), ) else: if model_id and dataset_id and dataset_config and dataset_split: return try_validate( model_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping, ) else: return ( gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), ) with gr.Row(): gr.Markdown(CONFIRM_MAPPING_DETAILS_MD) with gr.Row(): run_local = gr.Checkbox(value=True, label="Run in this Space") use_inference = read_inference_type("./config.yaml") == "hf_inference_api" run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API") with gr.Row(): selected = read_scanners("./config.yaml") scan_config = selected + ["data_leakage"] scanners = gr.CheckboxGroup( choices=scan_config, value=selected, label="Scan Settings", visible=True ) with gr.Row(): model_id_input = gr.Textbox( label="Hugging Face model id", placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest", ) dataset_id_input = gr.Textbox( label="Hugging Face Dataset id", placeholder="tweet_eval", ) with gr.Row(): dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False) dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False) with gr.Row(visible=True) as loading_row: gr.Markdown( """

🚀🐢Please validate your model and dataset first...

""" ) with gr.Row(visible=False) as preview_row: gr.Markdown( """

Confirm Pre-processing Details

Base on your model and dataset, we inferred this label mapping and feature mapping. If the mapping is incorrect, please modify it in the table below. """ ) with gr.Row(): id2label_mapping_dataframe = gr.DataFrame( label="Preview of label mapping", interactive=True, visible=False ) feature_mapping_dataframe = gr.DataFrame( label="Preview of feature mapping", interactive=True, visible=False ) with gr.Row(): example_input = gr.Markdown("Sample Input: ", visible=False) with gr.Row(): example_labels = gr.Label(label="Model Prediction Sample", visible=False) run_btn = gr.Button( "Get Evaluation Result", variant="primary", interactive=False, size="lg", ) model_id_input.blur( clear_column_mapping_tables, outputs=[id2label_mapping_dataframe, feature_mapping_dataframe], ) dataset_id_input.blur( check_dataset_and_get_config, dataset_id_input, dataset_config_input ) dataset_id_input.submit( check_dataset_and_get_config, dataset_id_input, dataset_config_input ) dataset_config_input.change( check_dataset_and_get_split, inputs=[dataset_config_input, dataset_id_input], outputs=[dataset_split_input], ) dataset_id_input.blur( clear_column_mapping_tables, outputs=[id2label_mapping_dataframe, feature_mapping_dataframe], ) # model_id_input.blur(gate_validate_btn, # inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input], # outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe]) # dataset_id_input.blur(gate_validate_btn, # inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input], # outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe]) dataset_config_input.change( gate_validate_btn, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, ], outputs=[ run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe, ], ) dataset_split_input.change( gate_validate_btn, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, ], outputs=[ run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe, ], ) id2label_mapping_dataframe.input( gate_validate_btn, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe, ], outputs=[ run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe, ], ) feature_mapping_dataframe.input( gate_validate_btn, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe, ], outputs=[ run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe, ], ) scanners.change(write_scanners, inputs=scanners) run_inference.change(write_inference_type, inputs=[run_inference]) run_btn.click( try_submit, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe, run_local, ], outputs=[ run_btn, ], )