import uuid import gradio as gr from io_utils import get_logs_file, read_scanners, write_scanners from text_classification_ui_helpers import ( get_related_datasets_from_leaderboard, align_columns_and_show_prediction, check_dataset, precheck_model_ds_enable_example_btn, select_run_mode, try_submit, write_column_mapping_to_config, ) from wordings import CONFIRM_MAPPING_DETAILS_MD, INTRODUCTION_MD MAX_LABELS = 40 MAX_FEATURES = 20 EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest" CONFIG_PATH = "./config.yaml" def get_demo(): with gr.Row(): gr.Markdown(INTRODUCTION_MD) uid_label = gr.Textbox( label="Evaluation ID:", value=uuid.uuid4, visible=False, interactive=False ) with gr.Row(): model_id_input = gr.Textbox( label="Hugging Face model id", placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)", ) with gr.Column(): dataset_id_input = gr.Dropdown( choices=[], value="", allow_custom_value=True, label="Hugging Face Dataset id", ) with gr.Row(): dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False, allow_custom_value=True) dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False, allow_custom_value=True) with gr.Row(): first_line_ds = gr.DataFrame(label="Dataset preview", visible=False) with gr.Row(): loading_status = gr.HTML(visible=True) with gr.Row(): example_btn = gr.Button( "Validate model & dataset", visible=True, variant="primary", interactive=False, ) with gr.Row(): example_input = gr.HTML(visible=False) with gr.Row(): example_prediction = gr.Label(label="Model Prediction Sample", visible=False) with gr.Row(): with gr.Accordion( label="Label and Feature Mapping", visible=False, open=False ) as column_mapping_accordion: with gr.Row(): gr.Markdown(CONFIRM_MAPPING_DETAILS_MD) column_mappings = [] with gr.Row(): with gr.Column(): gr.Markdown("# Label Mapping") for _ in range(MAX_LABELS): column_mappings.append(gr.Dropdown(visible=False)) with gr.Column(): gr.Markdown("# Feature Mapping") for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES): column_mappings.append(gr.Dropdown(visible=False)) with gr.Accordion(label="Model Wrap Advance Config", open=True): run_inference = gr.Checkbox( value=True, label="Run with HF Inference API" ) gr.HTML( value=""" We recommend to use Hugging Face Inference API for the evaluation, which requires your HF token.
Otherwise, an HF pipeline will be created and run in this Space. It takes more time to get the result.
Do not worry, your HF token is only used in this Space for your evaluation. """, ) inference_token = gr.Textbox( placeholder="hf-xxxxxxxxxxxxxxxxxxxx", value="", label="HF Token for Inference API", visible=True, interactive=True, ) with gr.Accordion(label="Scanner Advance Config (optional)", open=False): scanners = gr.CheckboxGroup(label="Scan Settings", visible=True) @gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[scanners]) def get_scanners(uid): selected = read_scanners(uid) # currently we remove data_leakage from the default scanners # Reason: data_leakage barely raises any issues and takes too many requests # when using inference API, causing rate limit error scan_config = selected + ["data_leakage"] return gr.update( choices=scan_config, value=selected, label="Scan Settings", visible=True ) with gr.Row(): run_btn = gr.Button( "Get Evaluation Result", variant="primary", interactive=False, size="lg", ) with gr.Row(): logs = gr.Textbox( value=get_logs_file, label="Giskard Bot Evaluation Log:", visible=False, every=0.5, ) dataset_id_input.change( check_dataset, inputs=[dataset_id_input], outputs=[dataset_config_input, dataset_split_input, first_line_ds, loading_status], ) dataset_config_input.change( check_dataset, inputs=[dataset_id_input, dataset_config_input], outputs=[dataset_config_input, dataset_split_input, first_line_ds, loading_status], ) dataset_split_input.change( check_dataset, inputs=[dataset_id_input, dataset_config_input, dataset_split_input], outputs=[dataset_config_input, dataset_split_input, first_line_ds, loading_status], ) scanners.change(write_scanners, inputs=[scanners, uid_label]) run_inference.change( select_run_mode, inputs=[run_inference], outputs=[inference_token], ) gr.on( triggers=[model_id_input.change], fn=get_related_datasets_from_leaderboard, inputs=[model_id_input], outputs=[dataset_id_input], ) gr.on( triggers=[label.change for label in column_mappings], fn=write_column_mapping_to_config, inputs=[ uid_label, *column_mappings, ], ) # label.change sometimes does not pass the changed value gr.on( triggers=[label.input for label in column_mappings], fn=write_column_mapping_to_config, inputs=[ uid_label, *column_mappings, ], ) gr.on( triggers=[ model_id_input.change, dataset_id_input.change, dataset_config_input.change, dataset_split_input.change, ], fn=precheck_model_ds_enable_example_btn, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, ], outputs=[example_btn, loading_status], ) gr.on( triggers=[ example_btn.click, ], fn=align_columns_and_show_prediction, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, uid_label, run_inference, inference_token, ], outputs=[ example_input, example_prediction, column_mapping_accordion, run_btn, loading_status, *column_mappings, ], ) gr.on( triggers=[ run_btn.click, ], fn=try_submit, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, run_inference, inference_token, uid_label, ], outputs=[run_btn, logs, uid_label], ) def enable_run_btn(run_inference, inference_token, model_id, dataset_id, dataset_config, dataset_split): if run_inference and inference_token == "": return gr.update(interactive=False) if model_id == "" or dataset_id == "" or dataset_config == "" or dataset_split == "": return gr.update(interactive=False) return gr.update(interactive=True) gr.on( triggers=[ run_inference.input, inference_token.input, scanners.input, ], fn=enable_run_btn, inputs=[ run_inference, inference_token, model_id_input, dataset_id_input, dataset_config_input, dataset_split_input ], outputs=[run_btn], ) gr.on( triggers=[label.input for label in column_mappings], fn=enable_run_btn, inputs=[ run_inference, inference_token, model_id_input, dataset_id_input, dataset_config_input, dataset_split_input ], # FIXME outputs=[run_btn], )