import gradio as gr import datasets import huggingface_hub import os import time import subprocess import logging import json from transformers.pipelines import TextClassificationPipeline from text_classification import text_classification_fix_column_mapping HF_REPO_ID = 'HF_REPO_ID' HF_SPACE_ID = 'SPACE_ID' HF_WRITE_TOKEN = 'HF_WRITE_TOKEN' theme = gr.themes.Soft( primary_hue="green", ) def check_model(model_id): try: task = huggingface_hub.model_info(model_id).pipeline_tag except Exception: return None, None try: from transformers import pipeline ppl = pipeline(task=task, model=model_id) return model_id, ppl except Exception as e: return model_id, e def check_dataset(dataset_id, dataset_config="default", dataset_split="test"): try: configs = datasets.get_dataset_config_names(dataset_id) except Exception: # Dataset may not exist return None, dataset_config, dataset_split if dataset_config not in configs: # Need to choose dataset subset (config) return dataset_id, configs, dataset_split ds = datasets.load_dataset(dataset_id, dataset_config) if isinstance(ds, datasets.DatasetDict): # Need to choose dataset split if dataset_split not in ds.keys(): return dataset_id, None, list(ds.keys()) elif not isinstance(ds, datasets.Dataset): # Unknown type return dataset_id, None, None return dataset_id, dataset_config, dataset_split def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_mapping): # Validate model m_id, ppl = check_model(model_id=model_id) if m_id is None: gr.Warning(f'Model "{model_id}" is not accessible. Please set your HF_TOKEN if it is a private model.') return ( dataset_config, dataset_split, gr.update(interactive=False), # Submit button gr.update(visible=False), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(visible=True), # Column mapping ) if isinstance(ppl, Exception): gr.Warning(f'Failed to load "{model_id} model": {ppl}') return ( dataset_config, dataset_split, gr.update(interactive=False), # Submit button gr.update(visible=False), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(visible=True), # Column mapping ) # Validate dataset d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split) dataset_ok = False if d_id is None: gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.') elif isinstance(config, list): gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.') config = gr.update(choices=config, value=config[0]) elif isinstance(split, list): gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.') split = gr.update(choices=split, value=split[0]) else: dataset_ok = True if not dataset_ok: return ( config, split, gr.update(interactive=False), # Submit button gr.update(visible=False), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(visible=True), # Column mapping ) # TODO: Validate column mapping by running once prediction_result = None id2label_df = None if isinstance(ppl, TextClassificationPipeline): try: column_mapping = json.loads(column_mapping) except Exception: column_mapping = {} column_mapping, prediction_result, id2label_df = \ text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split) column_mapping = json.dumps(column_mapping, indent=2) del ppl if prediction_result is None: gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.') return ( config, split, gr.update(interactive=False), # Submit button gr.update(visible=False), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping ) elif id2label_df is None: gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.') return ( config, split, gr.update(interactive=False), # Submit button gr.update(value=prediction_result, visible=True), # Model prediction preview gr.update(visible=False), # Label mapping preview gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping ) gr.Info("Model and dataset validations passed. Your can submit the evaluation task.") return ( config, split, gr.update(interactive=True), # Submit button gr.update(value=prediction_result, visible=True), # Model prediction preview gr.update(value=id2label_df, visible=True), # Label mapping preview gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping ) def try_submit(m_id, d_id, config, split, local): if local: command = [ "python", "cli.py", "--loader", "huggingface", "--model", m_id, "--dataset", d_id, "--dataset_config", config, "--dataset_split", split, "--hf_token", os.environ.get(HF_WRITE_TOKEN), "--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID), "--output_format", "markdown", "--output_portal", "huggingface", ] eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>" start = time.time() logging.info(f"Start local evaluation on {eval_str}") evaluator = subprocess.Popen( command, cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"), stderr=subprocess.STDOUT, ) result = evaluator.wait() logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s") with gr.Blocks(theme=theme) as iface: with gr.Row(): with gr.Column(): model_id_input = gr.Textbox( label="Hugging Face model id", placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest", ) # TODO: Add supported model pairs: Text Classification - text-classification model_type = gr.Dropdown( label="Hugging Face model type", choices=[ ("Auto-detect", 0), ("Text Classification", 1), ], value=0, ) example_labels = gr.Label(label='Model pipeline test prediction result', visible=False) with gr.Column(): dataset_id_input = gr.Textbox( label="Hugging Face dataset id", placeholder="tweet_eval", ) dataset_config_input = gr.Dropdown( label="Hugging Face dataset subset", choices=[ "default", ], allow_custom_value=True, value="default", ) dataset_split_input = gr.Dropdown( label="Hugging Face dataset split", choices=[ "test", ], allow_custom_value=True, value="test", ) id2label_mapping_dataframe = gr.DataFrame(visible=False) with gr.Row(): with gr.Accordion("Advance", open=False): run_local = gr.Checkbox(value=True, label="Run in this Space") column_mapping_input = gr.Textbox( value="", lines=5, label="Column mapping", placeholder="Description of mapping of columns in model to dataset, in json format, e.g.:\n" '{\n' ' "text": "context",\n' ' "label": {0: "Positive", 1: "Negative"}\n' '}', ) with gr.Row(): validate_btn = gr.Button("Validate model and dataset", variant="primary") run_btn = gr.Button( "Submit evaluation task", variant="primary", interactive=False, ) validate_btn.click( try_validate, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, column_mapping_input, ], outputs=[ dataset_config_input, dataset_split_input, run_btn, example_labels, id2label_mapping_dataframe, column_mapping_input, ], ) run_btn.click( try_submit, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, run_local, ], ) iface.queue(max_size=20) iface.launch()