Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# import torch | |
# import transformers | |
# from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
# from peft import PeftConfig, PeftModel | |
# import warnings | |
# from threading import Thread | |
# warnings.filterwarnings("ignore") | |
# PEFT_MODEL = "givyboy/phi-2-finetuned-mental-health-conversational" | |
# SYSTEM_PROMPT = """Answer the following question truthfully. | |
# If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'. | |
# If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.""" | |
# USER_PROMPT = lambda x: f"""<HUMAN>: {x}\n<ASSISTANT>: """ | |
# ADD_RESPONSE = lambda x, y: f"""<HUMAN>: {x}\n<ASSISTANT>: {y}""" | |
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# bnb_config = BitsAndBytesConfig( | |
# load_in_4bit=True, | |
# bnb_4bit_quant_type="nf4", | |
# bnb_4bit_use_double_quant=True, | |
# bnb_4bit_compute_dtype=torch.float16, | |
# ) | |
# config = PeftConfig.from_pretrained(PEFT_MODEL) | |
# peft_base_model = AutoModelForCausalLM.from_pretrained( | |
# config.base_model_name_or_path, | |
# return_dict=True, | |
# # quantization_config=bnb_config, | |
# device_map="auto", | |
# trust_remote_code=True, | |
# offload_folder="offload/", | |
# offload_state_dict=True, | |
# ) | |
# peft_model = PeftModel.from_pretrained( | |
# peft_base_model, | |
# PEFT_MODEL, | |
# offload_folder="offload/", | |
# offload_state_dict=True, | |
# ) | |
# peft_model = peft_model.to(DEVICE) | |
# peft_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
# peft_tokenizer.pad_token = peft_tokenizer.eos_token | |
# pipeline = transformers.pipeline( | |
# "text-generation", | |
# model=peft_model, | |
# tokenizer=peft_tokenizer, | |
# torch_dtype=torch.bfloat16, | |
# trust_remote_code=True, | |
# device_map="auto", | |
# ) | |
# # def format_message(message: str, history: list[str], memory_limit: int = 3) -> str: | |
# # if len(history) > memory_limit: | |
# # history = history[-memory_limit:] | |
# # if len(history) == 0: | |
# # return f"{SYSTEM_PROMPT}\n{USER_PROMPT(message)}" | |
# # formatted_message = f"{SYSTEM_PROMPT}\n{ADD_RESPONSE(history[0][0], history[0][1])}" | |
# # for msg, ans in history[1:]: | |
# # formatted_message += f"\n{ADD_RESPONSE(msg, ans)}" | |
# # formatted_message += f"\n{USER_PROMPT(message)}" | |
# # return formatted_message | |
# # def get_model_response(message: str, history: list[str]) -> str: | |
# # formatted_message = format_message(message, history) | |
# # sequences = pipeline( | |
# # formatted_message, | |
# # do_sample=True, | |
# # top_k=10, | |
# # num_return_sequences=1, | |
# # eos_token_id=peft_tokenizer.eos_token_id, | |
# # max_length=600, | |
# # )[0] | |
# # print(sequences["generated_text"]) | |
# # output = sequences["generated_text"].split("<ASSISTANT>:")[-1].strip() | |
# # # print(f"Response: {output}") | |
# # return output | |
# start_message = "" | |
# def user(message, history): | |
# # Append the user's message to the conversation history | |
# return "", history + [[message, ""]] | |
# def chat(message, history): | |
# chat_history = [] | |
# for item in history: | |
# chat_history.append({"role": "user", "content": item[0]}) | |
# if item[1] is not None: | |
# chat_history.append({"role": "assistant", "content": item[1]}) | |
# message = f"{SYSTEM_PROMPT}\n{USER_PROMPT(message)}" | |
# chat_history.append({"role": "user", "content": message}) | |
# messages = peft_tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True) | |
# # Tokenize the messages string | |
# model_inputs = peft_tokenizer([messages], return_tensors="pt").to(DEVICE) | |
# streamer = transformers.TextIteratorStreamer( | |
# peft_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
# ) | |
# generate_kwargs = dict( | |
# model_inputs, | |
# streamer=streamer, | |
# max_new_tokens=1024, | |
# do_sample=True, | |
# top_p=0.95, | |
# top_k=1000, | |
# temperature=0.75, | |
# num_beams=1, | |
# ) | |
# t = Thread(target=peft_model.generate, kwargs=generate_kwargs) | |
# t.start() | |
# # Initialize an empty string to store the generated text | |
# partial_text = "" | |
# for new_text in streamer: | |
# # print(new_text) | |
# partial_text += new_text | |
# # Yield an empty string to cleanup the message textbox and the updated conversation history | |
# yield partial_text | |
# chat = gr.ChatInterface(fn=chat, title="Mental Health Chatbot - by Jayda Hunte") | |
# chat.launch(share=True) | |
import os | |
from openai import OpenAI | |
from dotenv import load_dotenv | |
import gradio as gr | |
load_dotenv() | |
API_KEY = os.getenv("OPENAI_API_KEY") | |
openai = OpenAI(api_key=API_KEY) | |
create_msg = lambda x, y: {"role": x, "content": y} | |
SYSTEM_PROMPT = create_msg( | |
"system", | |
"""You are a helpful mental health chatbot, please answer with care. If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'. If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.""".strip(), | |
) | |
def predict(message, history): | |
history_openai_format = [] | |
history_openai_format.append(SYSTEM_PROMPT) | |
for human, assistant in history: | |
history_openai_format.append({"role": "user", "content": human}) | |
history_openai_format.append({"role": "assistant", "content": assistant}) | |
history_openai_format.append({"role": "user", "content": message}) | |
response = openai.chat.completions.create( | |
model="ft:gpt-3.5-turbo-0613:personal::8kBTG8eh", messages=history_openai_format, temperature=1.0, stream=True | |
) | |
partial_message = "" | |
for chunk in response: | |
if chunk.choices[0].delta.content is not None: | |
partial_message = partial_message + chunk.choices[0].delta.content | |
yield partial_message | |
gr.ChatInterface(fn=predict, title="Mental Health Chatbot - by Jayda Hunte").launch(share=True) | |