import os from typing import List from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains import ( ConversationalRetrievalChain, ) from langchain.chat_models import ChatOpenAI from langchain.docstore.document import Document from langchain.memory import ChatMessageHistory, ConversationBufferMemory import chainlit as cl os.environ["OPENAI_API_KEY"] = "OPENAI_API_KEY" text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) @cl.on_chat_start async def on_chat_start(): files = None # Wait for the user to upload a file while files == None: files = await cl.AskFileMessage( content="Please upload a text file to begin!", accept=["text/plain"], max_size_mb=20, timeout=180, ).send() file = files[0] msg = cl.Message(content=f"Processing `{file.name}`...") await msg.send() with open(file.path, "r", encoding="utf-8") as f: text = f.read() # Split the text into chunks texts = text_splitter.split_text(text) # Create a metadata for each chunk metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))] # Create a Chroma vector store embeddings = OpenAIEmbeddings() docsearch = await cl.make_async(Chroma.from_texts)( texts, embeddings, metadatas=metadatas ) message_history = ChatMessageHistory() memory = ConversationBufferMemory( memory_key="chat_history", output_key="answer", chat_memory=message_history, return_messages=True, ) # Create a chain that uses the Chroma vector store chain = ConversationalRetrievalChain.from_llm( ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True), chain_type="stuff", retriever=docsearch.as_retriever(), memory=memory, return_source_documents=True, ) # Let the user know that the system is ready msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.update() cl.user_session.set("chain", chain) @cl.on_message async def main(message: cl.Message): chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain cb = cl.AsyncLangchainCallbackHandler() res = await chain.acall(message.content, callbacks=[cb]) answer = res["answer"] source_documents = res["source_documents"] # type: List[Document] text_elements = [] # type: List[cl.Text] if source_documents: for source_idx, source_doc in enumerate(source_documents): source_name = f"source_{source_idx}" # Create the text element referenced in the message text_elements.append( cl.Text(content=source_doc.page_content, name=source_name, display="side") ) source_names = [text_el.name for text_el in text_elements] if source_names: answer += f"\nSources: {', '.join(source_names)}" else: answer += "\nNo sources found" await cl.Message(content=answer, elements=text_elements).send()