Zscore_Crypto / main_with_plot copy.py
gjin10969
initialize
e97cf97
raw
history blame
8.37 kB
import pandas as pd
import ccxt
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import json
from datetime import datetime, timedelta
import pytz
# Prompt for the symbol and time frame
symbols = input('Please input Symbol: ')
timeframe = input("Please input time frame: ")
# Initialize Binance Futures API
binance = ccxt.binance({
'options': {'defaultType': 'future'}, # Specify futures
})
# Function to fetch historical data and calculate Z-Score
def fetch_and_calculate_zscore(symbol, timeframe, since, limit=200, rolling_window=30):
data = binance.fetch_ohlcv(symbol, timeframe=timeframe, since=since, limit=limit)
df = pd.DataFrame(data, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
# Convert timestamp to UTC datetime format
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms', utc=True)
# Calculate rolling mean, std, and Z-Score
df['mean'] = df['close'].rolling(window=rolling_window).mean()
df['std'] = df['close'].rolling(window=rolling_window).std()
df['z_score'] = (df['close'] - df['mean']) / df['std']
# Initialize signal columns
df['buy_signal'] = 0
df['sell_signal'] = 0
# Variables to track thresholds
in_sell_signal = False
in_buy_signal = False
signal_triggered = False # Track if any signal was triggered
# Iterate through the dataframe to track signals
for i in range(1, len(df)):
current_z = df.loc[i, 'z_score']
previous_z = df.loc[i - 1, 'z_score']
# Handle Z-score crossing extreme thresholds for sell signal
if not in_sell_signal:
# Z-score crosses above 1.85 (potential sell signal)
if current_z > 1.85 and previous_z <= 1.85:
print(f"Sell signal candidate at index {i}, Z-score = {current_z}")
in_sell_signal = True
# Handle Z-score crossing extreme thresholds for buy signal
if not in_buy_signal:
# Z-score crosses below -1.85 (potential buy signal)
if current_z < -1.85 and previous_z >= -1.85:
print(f"Buy signal candidate at index {i}, Z-score = {current_z}")
in_buy_signal = True
# Keep the signal active if the Z-score remains within the range
if in_sell_signal:
# Sell signal is triggered between 1.85 and 1
if 1 <= current_z <= 1.85:
df.loc[i, 'sell_signal'] = 1 # Sell signal active
print(f"Sell signal active at index {i}, Z-score = {current_z}")
signal_triggered = True
# Exit sell signal if Z-score falls below 1
elif current_z < 1:
in_sell_signal = False
print(f"Sell signal exited at index {i}, Z-score = {current_z}")
if in_buy_signal:
# Buy signal is triggered between -1.85 and -1
if -1.85 <= current_z <= -1:
df.loc[i, 'buy_signal'] = 1 # Buy signal active
print(f"Buy signal active at index {i}, Z-score = {current_z}")
signal_triggered = True
# Exit buy signal if Z-score rises above -1
elif current_z > -1:
in_buy_signal = False
print(f"Buy signal exited at index {i}, Z-score = {current_z}")
return df
# Convert time to local timezone (Philippine Time)
utc_time = datetime.utcnow()
philippine_tz = pytz.timezone('Asia/Manila')
philippine_time = pytz.utc.localize(utc_time).astimezone(philippine_tz)
# Format the time in your preferred format
formatted_ph_time = philippine_time.strftime("%Y-%m-%d %H:%M:%S")
# Function to update signals in JSON with Z-Score (Appending to file)
def update_signal_json(symbol, df, json_data):
# Extract latest data point
latest_data = df.iloc[-1]
# Check if the latest Z-score has a signal
signal_status = "True" if latest_data['buy_signal'] == 1 or latest_data['sell_signal'] == 1 else "False"
# Prepare new entry with real-time Z-Score
signal_entry = {
"symbol": symbol,
"time_frame": timeframe,
"date_and_time": latest_data['timestamp'].strftime("%Y-%m-%d %H:%M:%S"),
"realtime_ph_time": formatted_ph_time, # Add the local Philippine time (UTC+8)
"current_price": latest_data['close'],
"zscore": latest_data['z_score'],
"detection": signal_status # Add signal status
}
# Append new data to the existing list in json_data
json_data.append(signal_entry)
return json_data
# Function to plot data
def plot_data(btcdom_df, pair_df, btc_df, ax):
ax.clear() # Clear previous plots
# Plot Z-Scores for all pairs
ax.plot(btcdom_df['timestamp'], btcdom_df['z_score'], label="BTCDOM/USDT Z-Score", color='blue', linestyle='-')
ax.plot(pair_df['timestamp'], pair_df['z_score'], label=f"{symbols}/USDT Z-Score", color='orange', linestyle='-')
ax.plot(btc_df['timestamp'], btc_df['z_score'], label="BTC/USDT Z-Score", color='gray', linestyle='-')
# Add thresholds
ax.axhline(y=2, color='red', linestyle='--', label='Overbought Threshold')
ax.axhline(y=-2, color='green', linestyle='--', label='Oversold Threshold')
# Plot Buy and Sell signals for BTCDOM/USDT
ax.scatter(btcdom_df[btcdom_df['buy_signal'] == 1]['timestamp'], btcdom_df[btcdom_df['buy_signal'] == 1]['z_score'],
marker='^', color='green', label='BTCDOM Buy Signal')
ax.scatter(btcdom_df[btcdom_df['sell_signal'] == 1]['timestamp'], btcdom_df[btcdom_df['sell_signal'] == 1]['z_score'],
marker='v', color='red', label='BTCDOM Sell Signal')
# Plot signals for the other pair
ax.scatter(pair_df[pair_df['buy_signal'] == 1]['timestamp'], pair_df[pair_df['buy_signal'] == 1]['z_score'],
marker='^', color='green', alpha=0.5, label=f"{symbols} Buy Signal")
ax.scatter(pair_df[pair_df['sell_signal'] == 1]['timestamp'], pair_df[pair_df['sell_signal'] == 1]['z_score'],
marker='v', color='red', alpha=0.5, label=f"{symbols} Sell Signal")
# Format plot
ax.set_title(f"Z-Scores Signals {timeframe} for {symbols}/USDT Futures", fontsize=16)
ax.set_xlabel("Time (UTC)", fontsize=12)
ax.set_ylabel("Z-Score", fontsize=12)
ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d %H:%M"))
ax.legend(loc="upper left")
ax.grid(True)
plt.xticks(rotation=45)
plt.draw() # Redraw the plot
plt.pause(0.1) # Pause to allow plot to update
# Function to run historical data processing
def run_historical():
json_data = []
try:
with open('signals.json', 'r') as file:
json_data = json.load(file)
except FileNotFoundError:
pass
fig, ax = plt.subplots(figsize=(14, 7))
# Set start and end dates for the loop
start_date = datetime(2023, 1, 1)
end_date = datetime(2024, 1, 1)
# Loop through each month in the date range (or week, depending on your choice)
current_date = start_date
while current_date < end_date:
# Set 'since' to the start of each month or week (whichever you prefer)
since = binance.parse8601(current_date.strftime('%Y-%m-%dT%H:%M:%SZ'))
btcdom_symbol = 'BTCDOM/USDT'
pair_symbol = f'{symbols}/USDT'
btc_symbol = 'BTC/USDT'
# Fetch and process data
btcdom_df = fetch_and_calculate_zscore(btcdom_symbol, timeframe, since)
pair_df = fetch_and_calculate_zscore(pair_symbol, timeframe, since)
btc_df = fetch_and_calculate_zscore(btc_symbol, timeframe, since)
# Update signals and append to JSON
json_data = update_signal_json(pair_symbol, pair_df, json_data)
json_data = update_signal_json(btc_symbol, btc_df, json_data)
json_data = update_signal_json(btcdom_symbol, btcdom_df, json_data)
# Save updated signals to JSON
with open('signals.json', 'w') as file:
json.dump(json_data, file, indent=4)
# Plot the data
plot_data(btcdom_df, pair_df, btc_df, ax)
# Display the plot after each loop
plt.show() # Show the plot for the current iteration
# Move to the next chunk (next month/week)
current_date += timedelta(weeks=4)
# Run the historical data processing
run_historical()