Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.express as px
|
5 |
+
from sklearn.decomposition import PCA
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
|
8 |
+
# Load pre-trained sentence transformer model
|
9 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
10 |
+
|
11 |
+
# Function to calculate embeddings and PCA
|
12 |
+
def compute_pca(texts):
|
13 |
+
# Generate embeddings
|
14 |
+
embeddings = model.encode(texts)
|
15 |
+
|
16 |
+
# Compute PCA
|
17 |
+
pca = PCA(n_components=2)
|
18 |
+
pca_result = pca.fit_transform(embeddings)
|
19 |
+
|
20 |
+
# Create DataFrame for visualization
|
21 |
+
df = pd.DataFrame({
|
22 |
+
'Text': texts,
|
23 |
+
'PC1': pca_result[:, 0],
|
24 |
+
'PC2': pca_result[:, 1]
|
25 |
+
})
|
26 |
+
|
27 |
+
# Plot the PCA result
|
28 |
+
fig = px.scatter(df, x='PC1', y='PC2', text='Text', title='PCA of Text Embeddings')
|
29 |
+
return fig
|
30 |
+
|
31 |
+
# Define Gradio app layout and interactions
|
32 |
+
def text_editor_app():
|
33 |
+
with gr.Blocks() as demo:
|
34 |
+
# Text box to input texts
|
35 |
+
text_input = gr.Textbox(lines=10, placeholder="Enter or paste your texts here, one per line...", label="Text Inputs")
|
36 |
+
|
37 |
+
# Display the list of texts
|
38 |
+
texts = gr.Dataframe(headers=["Texts"], label="Text List", interactive=True)
|
39 |
+
|
40 |
+
# Button to process texts
|
41 |
+
submit_button = gr.Button("Compute Embeddings and PCA")
|
42 |
+
|
43 |
+
# Output plot
|
44 |
+
output_plot = gr.Plot(label="PCA Visualization")
|
45 |
+
|
46 |
+
# Define button click interaction
|
47 |
+
def process_texts(text_input):
|
48 |
+
# Split input texts by newline
|
49 |
+
text_list = text_input.strip().split('\n')
|
50 |
+
return gr.DataFrame.update(value=[[t] for t in text_list], row_count=len(text_list))
|
51 |
+
|
52 |
+
submit_button.click(fn=lambda x: compute_pca([t[0] for t in x]), inputs=texts, outputs=output_plot)
|
53 |
+
text_input.change(fn=process_texts, inputs=text_input, outputs=texts)
|
54 |
+
|
55 |
+
return demo
|
56 |
+
|
57 |
+
# Launch the app
|
58 |
+
text_editor_app().launch()
|