icapp_space / app.py
gmshroff's picture
commression functions for activity log
df3fc47
raw
history blame
3.72 kB
from flask import Flask,request,render_template,send_file,jsonify
import os
from transformers import AutoTokenizer, AutoModel
import anvil.server
import pathlib
import textwrap
import import_ipynb
from library import call_gpt, call_gemini, compress_bool_list, uncompress_bool_list
from background_service import BackgroundTaskService
import numpy as np
# anvil.server.connect('PLMOIU5VCGGUOJH2XORIBWV3-ZXZVFLWX7QFIIAF4')
anvil.server.connect("S3SLHUQ2BB33NVTP7FWRAOHS-NDSRD7CDALRPSPLL")
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
# model = SentenceTransformer('thenlper/gte-large')
model = SentenceTransformer('BAAI/bge-large-en')
@anvil.server.callable
def encode(sentence = None):
vec = model.encode(sentence)
return [float(val) if isinstance(val, (int, float, np.float32)) else 0.0 for val in vec]
app=Flask(__name__)
MESSAGED={'title':'API Server for ICAPP',
'messageL':['published server functions:','encode_anvil(text)', 'encode(sentence)',
'call_gemini(text,key)','call_gpt(text,key,model)',
'task_id<=launch(func_name,*args)','poll(task_id)']}
tokenizer = AutoTokenizer.from_pretrained('allenai/specter')
encoder = AutoModel.from_pretrained('allenai/specter')
anvil.server.callable(call_gpt)
anvil.server.callable(call_gemini)
anvil.server.callable(compress_bool_list)
anvil.server.callable(uncompress_bool_list)
service=BackgroundTaskService(max_tasks=10)
service.register(call_gpt)
service.register(call_gemini)
@anvil.server.callable
def launch(func_name,*args):
global service
# Launch task
task_id = service.launch_task(func_name, *args)
print(f"Task launched with ID: {task_id}")
return task_id
@anvil.server.callable
def poll(task_id):
global service
# Poll for completion; if not complete return "In Progress" else return result
result = service.get_result(task_id)
if result=='No such task': return str(result)
elif result!='In Progress':
del service.results[task_id]
if isinstance(result, (int, float, str, list, dict, tuple)):
return result
else:
print(str(result))
return str(result)
else: return str(result)
@anvil.server.callable
def encode_anvil(text):
inputs = tokenizer(text, padding=True, truncation=True,
return_tensors="pt", max_length=512)
result = encoder(**inputs)
embeddings = result.last_hidden_state[:, 0, :]
emb_array = embeddings.detach().numpy()
embedding=emb_array.tolist()
return embedding
@anvil.server.callable
def reset_service():
global call_gpt, call_gemini, service
service=BackgroundTaskService(max_tasks=10)
service.register(call_gpt)
service.register(call_gemini)
@anvil.server.callable
def print_results_table():
global service
return(service.results)
@app.route('/encode',methods=['GET','POST'])
def encode():
print(request)
if request.method=='GET':
text=request.args.get('text')
elif request.method=='POST':
data=request.get_json()
if 'text' in data: text=data["text"]
if text=='' or text is None: return -1
inputs = tokenizer(text, padding=True, truncation=True,
return_tensors="pt", max_length=512)
result = encoder(**inputs)
embeddings = result.last_hidden_state[:, 0, :]
emb_array = embeddings.detach().numpy()
embedding=emb_array.tolist()
return jsonify({'embedding': embedding})
@app.route('/',methods=['GET', 'POST'])
def home():
return render_template('home.html',messageD=MESSAGED)
if __name__=='__main__':
app.run(host="0.0.0.0", port=7860)