Spaces:
Running
Running
error handling in Gemini call
Browse files- library.ipynb +5 -2
- test.ipynb +0 -367
library.ipynb
CHANGED
@@ -24,8 +24,11 @@
|
|
24 |
" # return response\n",
|
25 |
" genai.configure(api_key=key)\n",
|
26 |
" model = genai.GenerativeModel('gemini-pro')\n",
|
27 |
-
"
|
28 |
-
"
|
|
|
|
|
|
|
29 |
]
|
30 |
},
|
31 |
{
|
|
|
24 |
" # return response\n",
|
25 |
" genai.configure(api_key=key)\n",
|
26 |
" model = genai.GenerativeModel('gemini-pro')\n",
|
27 |
+
" try:\n",
|
28 |
+
" response = model.generate_content(text)\n",
|
29 |
+
" except Exception as e:\n",
|
30 |
+
" return -1,str(e)\n",
|
31 |
+
" return 0,response.text"
|
32 |
]
|
33 |
},
|
34 |
{
|
test.ipynb
DELETED
@@ -1,367 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": null,
|
6 |
-
"metadata": {
|
7 |
-
"tags": []
|
8 |
-
},
|
9 |
-
"outputs": [],
|
10 |
-
"source": [
|
11 |
-
"import requests\n",
|
12 |
-
"import json\n",
|
13 |
-
"from urllib.request import urlretrieve\n",
|
14 |
-
"import pandas as pd\n",
|
15 |
-
"import time\n",
|
16 |
-
"from allkeys import OPENAIKEY, GEMENIKEY"
|
17 |
-
]
|
18 |
-
},
|
19 |
-
{
|
20 |
-
"cell_type": "code",
|
21 |
-
"execution_count": null,
|
22 |
-
"metadata": {},
|
23 |
-
"outputs": [],
|
24 |
-
"source": [
|
25 |
-
"import anvil.server\n",
|
26 |
-
"anvil.server.connect('PLMOIU5VCGGUOJH2XORIBWV3-ZXZVFLWX7QFIIAF4')"
|
27 |
-
]
|
28 |
-
},
|
29 |
-
{
|
30 |
-
"cell_type": "code",
|
31 |
-
"execution_count": null,
|
32 |
-
"metadata": {},
|
33 |
-
"outputs": [],
|
34 |
-
"source": [
|
35 |
-
"def fetch_result(task_id):\n",
|
36 |
-
" while True:\n",
|
37 |
-
" result=anvil.server.call('poll',task_id)\n",
|
38 |
-
" if result!='In Progress' or result=='No such task': break\n",
|
39 |
-
" else: \n",
|
40 |
-
" time.sleep(1)\n",
|
41 |
-
" print(result)\n",
|
42 |
-
" print(result)\n",
|
43 |
-
" return result"
|
44 |
-
]
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"cell_type": "code",
|
48 |
-
"execution_count": null,
|
49 |
-
"metadata": {},
|
50 |
-
"outputs": [],
|
51 |
-
"source": [
|
52 |
-
"text='write a python function to compute the nth digit of pi'\n",
|
53 |
-
"model='gpt-3.5-turbo'"
|
54 |
-
]
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"cell_type": "code",
|
58 |
-
"execution_count": null,
|
59 |
-
"metadata": {},
|
60 |
-
"outputs": [],
|
61 |
-
"source": [
|
62 |
-
"task_id=anvil.server.call('launch','call_gemini',text,GEMENIKEY)"
|
63 |
-
]
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"cell_type": "code",
|
67 |
-
"execution_count": null,
|
68 |
-
"metadata": {},
|
69 |
-
"outputs": [],
|
70 |
-
"source": [
|
71 |
-
"task_id=anvil.server.call('launch','call_gpt',text,OPENAIKEY,model)"
|
72 |
-
]
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"cell_type": "code",
|
76 |
-
"execution_count": null,
|
77 |
-
"metadata": {},
|
78 |
-
"outputs": [],
|
79 |
-
"source": [
|
80 |
-
"fetch_result(task_id)"
|
81 |
-
]
|
82 |
-
},
|
83 |
-
{
|
84 |
-
"cell_type": "code",
|
85 |
-
"execution_count": null,
|
86 |
-
"metadata": {},
|
87 |
-
"outputs": [],
|
88 |
-
"source": [
|
89 |
-
"print(result)"
|
90 |
-
]
|
91 |
-
},
|
92 |
-
{
|
93 |
-
"cell_type": "code",
|
94 |
-
"execution_count": null,
|
95 |
-
"metadata": {},
|
96 |
-
"outputs": [],
|
97 |
-
"source": [
|
98 |
-
"print(result[1],end='\\n')"
|
99 |
-
]
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"cell_type": "code",
|
103 |
-
"execution_count": null,
|
104 |
-
"metadata": {},
|
105 |
-
"outputs": [],
|
106 |
-
"source": [
|
107 |
-
"import pathlib\n",
|
108 |
-
"import textwrap\n",
|
109 |
-
"from IPython.display import display\n",
|
110 |
-
"from IPython.display import Markdown\n",
|
111 |
-
"\n",
|
112 |
-
"def to_markdown(text):\n",
|
113 |
-
" text = text.replace('•', ' *')\n",
|
114 |
-
" return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))"
|
115 |
-
]
|
116 |
-
},
|
117 |
-
{
|
118 |
-
"cell_type": "code",
|
119 |
-
"execution_count": null,
|
120 |
-
"metadata": {},
|
121 |
-
"outputs": [],
|
122 |
-
"source": [
|
123 |
-
"prompt='write code that defines a transformer network from scratch in pytorch'"
|
124 |
-
]
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"cell_type": "code",
|
128 |
-
"execution_count": null,
|
129 |
-
"metadata": {},
|
130 |
-
"outputs": [],
|
131 |
-
"source": [
|
132 |
-
"response=anvil.server.call('call_gemini',prompt)"
|
133 |
-
]
|
134 |
-
},
|
135 |
-
{
|
136 |
-
"cell_type": "code",
|
137 |
-
"execution_count": null,
|
138 |
-
"metadata": {},
|
139 |
-
"outputs": [],
|
140 |
-
"source": [
|
141 |
-
"anvil.server.call('encode_anvil',prompt)"
|
142 |
-
]
|
143 |
-
},
|
144 |
-
{
|
145 |
-
"cell_type": "code",
|
146 |
-
"execution_count": null,
|
147 |
-
"metadata": {},
|
148 |
-
"outputs": [],
|
149 |
-
"source": [
|
150 |
-
"to_markdown(response)"
|
151 |
-
]
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"cell_type": "code",
|
155 |
-
"execution_count": null,
|
156 |
-
"metadata": {},
|
157 |
-
"outputs": [],
|
158 |
-
"source": [
|
159 |
-
"anvil.server.call('encode_anvil','I am a robot')[0]"
|
160 |
-
]
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"cell_type": "code",
|
164 |
-
"execution_count": null,
|
165 |
-
"metadata": {},
|
166 |
-
"outputs": [],
|
167 |
-
"source": [
|
168 |
-
"def encode(text,server='local'):\n",
|
169 |
-
" headers = {'Content-Type': 'application/json'}\n",
|
170 |
-
" if server=='local': url='http://127.0.0.1:7860/encode'\n",
|
171 |
-
" elif server=='hf': url='https://huggingface.co/spaces/gmshroff/gmserver/encode'\n",
|
172 |
-
" body={'text':text}\n",
|
173 |
-
" response=requests.post(url=url,data=json.dumps(body),headers = {'Content-Type': 'application/json'})\n",
|
174 |
-
" return response\n",
|
175 |
-
" return json.loads(response.content)['embedding']"
|
176 |
-
]
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"cell_type": "code",
|
180 |
-
"execution_count": null,
|
181 |
-
"metadata": {},
|
182 |
-
"outputs": [],
|
183 |
-
"source": [
|
184 |
-
"response=encode('I am a robot',server='local')"
|
185 |
-
]
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"cell_type": "code",
|
189 |
-
"execution_count": null,
|
190 |
-
"metadata": {},
|
191 |
-
"outputs": [],
|
192 |
-
"source": [
|
193 |
-
"response.content"
|
194 |
-
]
|
195 |
-
},
|
196 |
-
{
|
197 |
-
"cell_type": "code",
|
198 |
-
"execution_count": null,
|
199 |
-
"metadata": {},
|
200 |
-
"outputs": [],
|
201 |
-
"source": [
|
202 |
-
"headers = {'Content-Type': 'application/json'}\n",
|
203 |
-
"# url='http://127.0.0.1:5000/run'\n",
|
204 |
-
"url='https://huggingface.co/spaces/gmshroff/gmserver/'\n",
|
205 |
-
"# url='http://127.0.0.1:7860/run'\n",
|
206 |
-
"# body={\"script\":\"python update_valdata.py\"}\n",
|
207 |
-
"# body={\"script\":\"pwd\"}"
|
208 |
-
]
|
209 |
-
},
|
210 |
-
{
|
211 |
-
"cell_type": "code",
|
212 |
-
"execution_count": null,
|
213 |
-
"metadata": {},
|
214 |
-
"outputs": [],
|
215 |
-
"source": [
|
216 |
-
"response=requests.get(url=url)"
|
217 |
-
]
|
218 |
-
},
|
219 |
-
{
|
220 |
-
"cell_type": "code",
|
221 |
-
"execution_count": null,
|
222 |
-
"metadata": {},
|
223 |
-
"outputs": [],
|
224 |
-
"source": [
|
225 |
-
"response.content"
|
226 |
-
]
|
227 |
-
},
|
228 |
-
{
|
229 |
-
"cell_type": "code",
|
230 |
-
"execution_count": null,
|
231 |
-
"metadata": {},
|
232 |
-
"outputs": [],
|
233 |
-
"source": [
|
234 |
-
"# url='http://127.0.0.1:7860/encode'\n",
|
235 |
-
"body={'text':'I am very good'}\n"
|
236 |
-
]
|
237 |
-
},
|
238 |
-
{
|
239 |
-
"cell_type": "code",
|
240 |
-
"execution_count": null,
|
241 |
-
"metadata": {},
|
242 |
-
"outputs": [],
|
243 |
-
"source": [
|
244 |
-
"response=requests.post(url=url,data=json.dumps(body),headers = {'Content-Type': 'application/json'})\n"
|
245 |
-
]
|
246 |
-
},
|
247 |
-
{
|
248 |
-
"cell_type": "code",
|
249 |
-
"execution_count": null,
|
250 |
-
"metadata": {},
|
251 |
-
"outputs": [],
|
252 |
-
"source": [
|
253 |
-
"url"
|
254 |
-
]
|
255 |
-
},
|
256 |
-
{
|
257 |
-
"cell_type": "code",
|
258 |
-
"execution_count": null,
|
259 |
-
"metadata": {},
|
260 |
-
"outputs": [],
|
261 |
-
"source": [
|
262 |
-
"print(response)"
|
263 |
-
]
|
264 |
-
},
|
265 |
-
{
|
266 |
-
"cell_type": "code",
|
267 |
-
"execution_count": null,
|
268 |
-
"metadata": {},
|
269 |
-
"outputs": [],
|
270 |
-
"source": [
|
271 |
-
"print(response.__dict__)"
|
272 |
-
]
|
273 |
-
},
|
274 |
-
{
|
275 |
-
"cell_type": "code",
|
276 |
-
"execution_count": null,
|
277 |
-
"metadata": {},
|
278 |
-
"outputs": [],
|
279 |
-
"source": [
|
280 |
-
"print(json.loads(response.content)['embedding'])"
|
281 |
-
]
|
282 |
-
},
|
283 |
-
{
|
284 |
-
"cell_type": "code",
|
285 |
-
"execution_count": null,
|
286 |
-
"metadata": {
|
287 |
-
"tags": []
|
288 |
-
},
|
289 |
-
"outputs": [],
|
290 |
-
"source": [
|
291 |
-
"urlretrieve(url='http://127.0.0.1:7860/file/data.csv',filename='./returned_file.csv')"
|
292 |
-
]
|
293 |
-
},
|
294 |
-
{
|
295 |
-
"cell_type": "code",
|
296 |
-
"execution_count": null,
|
297 |
-
"metadata": {},
|
298 |
-
"outputs": [],
|
299 |
-
"source": [
|
300 |
-
"df=pd.read_parquet('/tmp/validation_subset_int8.parquet')"
|
301 |
-
]
|
302 |
-
},
|
303 |
-
{
|
304 |
-
"cell_type": "code",
|
305 |
-
"execution_count": null,
|
306 |
-
"metadata": {},
|
307 |
-
"outputs": [],
|
308 |
-
"source": [
|
309 |
-
"import torch\n",
|
310 |
-
"import torch.nn as nn\n",
|
311 |
-
"import torch.nn.functional as F\n",
|
312 |
-
"\n",
|
313 |
-
"class Transformer(nn.Module):\n",
|
314 |
-
" def __init__(self, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):\n",
|
315 |
-
" super(Transformer, self).__init__()\n",
|
316 |
-
" self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout)\n",
|
317 |
-
"\n",
|
318 |
-
" def forward(self, src, tgt):\n",
|
319 |
-
" output = self.transformer(src, tgt)\n",
|
320 |
-
" return output\n",
|
321 |
-
"\n",
|
322 |
-
"# Example usage:\n",
|
323 |
-
"# Define the model parameters\n",
|
324 |
-
"d_model = 512\n",
|
325 |
-
"nhead = 8\n",
|
326 |
-
"num_encoder_layers = 6\n",
|
327 |
-
"num_decoder_layers = 6\n",
|
328 |
-
"dim_feedforward = 2048\n",
|
329 |
-
"dropout = 0.1\n",
|
330 |
-
"\n",
|
331 |
-
"# Initialize the model\n",
|
332 |
-
"model = Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout)\n",
|
333 |
-
"\n",
|
334 |
-
"# Generate some sample data\n",
|
335 |
-
"src = torch.rand(10, 32, 512)\n",
|
336 |
-
"tgt = torch.rand(20, 32, 512)\n",
|
337 |
-
"\n",
|
338 |
-
"# Pass the data through the model\n",
|
339 |
-
"output = model(src, tgt)\n",
|
340 |
-
"\n",
|
341 |
-
"# Print the output shape\n",
|
342 |
-
"print(output.shape)"
|
343 |
-
]
|
344 |
-
}
|
345 |
-
],
|
346 |
-
"metadata": {
|
347 |
-
"kernelspec": {
|
348 |
-
"display_name": "Python 3 (ipykernel)",
|
349 |
-
"language": "python",
|
350 |
-
"name": "python3"
|
351 |
-
},
|
352 |
-
"language_info": {
|
353 |
-
"codemirror_mode": {
|
354 |
-
"name": "ipython",
|
355 |
-
"version": 3
|
356 |
-
},
|
357 |
-
"file_extension": ".py",
|
358 |
-
"mimetype": "text/x-python",
|
359 |
-
"name": "python",
|
360 |
-
"nbconvert_exporter": "python",
|
361 |
-
"pygments_lexer": "ipython3",
|
362 |
-
"version": "3.10.13"
|
363 |
-
}
|
364 |
-
},
|
365 |
-
"nbformat": 4,
|
366 |
-
"nbformat_minor": 4
|
367 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|