from flask import Flask,request,render_template,send_file,jsonify import os from transformers import AutoTokenizer, AutoModel import anvil.server import pathlib import textwrap import import_ipynb from library import call_gpt, call_gemini, compress_bool_list, uncompress_bool_list from background_service import BackgroundTaskService import numpy as np # anvil.server.connect('PLMOIU5VCGGUOJH2XORIBWV3-ZXZVFLWX7QFIIAF4') anvil.server.connect("S3SLHUQ2BB33NVTP7FWRAOHS-NDSRD7CDALRPSPLL") from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim # model = SentenceTransformer('thenlper/gte-large') model = SentenceTransformer('BAAI/bge-large-en') @anvil.server.callable def encode(sentence = None): vec = model.encode(sentence) return [float(val) if isinstance(val, (int, float, np.float32)) else 0.0 for val in vec] app=Flask(__name__) MESSAGED={'title':'API Server for ICAPP', 'messageL':['published server functions:','encode_anvil(text)', 'encode(sentence)', 'call_gemini(text,key)','call_gpt(text,key,model)', 'task_id<=launch(func_name,*args)','poll(task_id)']} tokenizer = AutoTokenizer.from_pretrained('allenai/specter') encoder = AutoModel.from_pretrained('allenai/specter') anvil.server.callable(call_gpt) anvil.server.callable(call_gemini) anvil.server.callable(compress_bool_list) anvil.server.callable(uncompress_bool_list) service=BackgroundTaskService(max_tasks=10) service.register(call_gpt) service.register(call_gemini) @anvil.server.callable def launch(func_name,*args): global service # Launch task task_id = service.launch_task(func_name, *args) print(f"Task launched with ID: {task_id}") return task_id @anvil.server.callable def poll(task_id): global service # Poll for completion; if not complete return "In Progress" else return result result = service.get_result(task_id) if result=='No such task': return str(result) elif result!='In Progress': del service.results[task_id] if isinstance(result, (int, float, str, list, dict, tuple)): return result else: print(str(result)) return str(result) else: return str(result) @anvil.server.callable def encode_anvil(text): inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt", max_length=512) result = encoder(**inputs) embeddings = result.last_hidden_state[:, 0, :] emb_array = embeddings.detach().numpy() embedding=emb_array.tolist() return embedding @anvil.server.callable def reset_service(): global call_gpt, call_gemini, service service=BackgroundTaskService(max_tasks=10) service.register(call_gpt) service.register(call_gemini) @anvil.server.callable def print_results_table(): global service return(service.results) @app.route('/encode',methods=['GET','POST']) def encode(): print(request) if request.method=='GET': text=request.args.get('text') elif request.method=='POST': data=request.get_json() if 'text' in data: text=data["text"] if text=='' or text is None: return -1 inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt", max_length=512) result = encoder(**inputs) embeddings = result.last_hidden_state[:, 0, :] emb_array = embeddings.detach().numpy() embedding=emb_array.tolist() return jsonify({'embedding': embedding}) @app.route('/',methods=['GET', 'POST']) def home(): return render_template('home.html',messageD=MESSAGED) if __name__=='__main__': app.run(host="0.0.0.0", port=7860)