Spaces:
Running
Running
from enum import Enum, auto | |
import torch | |
from huggingface_hub import ( # pyright: ignore[reportMissingTypeStubs] | |
hf_hub_download, # pyright: ignore[reportUnknownVariableType] | |
) | |
from PIL import Image | |
from refiners.fluxion.utils import load_from_safetensors, tensor_to_image | |
from refiners.foundationals.clip import CLIPTextEncoderL | |
from refiners.foundationals.latent_diffusion import SD1UNet | |
from refiners.foundationals.latent_diffusion.stable_diffusion_1 import SD1Autoencoder | |
from refiners.foundationals.latent_diffusion.stable_diffusion_1.ic_light import ICLight | |
def load_ic_light(device: torch.device, dtype: torch.dtype) -> ICLight: | |
return ICLight( | |
patch_weights=load_from_safetensors( | |
path=hf_hub_download( | |
repo_id="refiners/sd15.ic_light.fc", | |
filename="model.safetensors", | |
revision="ea10b4403e97c786a98afdcbdf0e0fec794ea542", | |
), | |
), | |
unet=SD1UNet(in_channels=4, device=device, dtype=dtype).load_from_safetensors( | |
tensors_path=hf_hub_download( | |
repo_id="refiners/sd15.realistic_vision.v5_1.unet", | |
filename="model.safetensors", | |
revision="94f74be7adfd27bee330ea1071481c0254c29989", | |
) | |
), | |
clip_text_encoder=CLIPTextEncoderL(device=device, dtype=dtype).load_from_safetensors( | |
tensors_path=hf_hub_download( | |
repo_id="refiners/sd15.realistic_vision.v5_1.text_encoder", | |
filename="model.safetensors", | |
revision="7f6fa1e870c8f197d34488e14b89e63fb8d7fd6e", | |
) | |
), | |
lda=SD1Autoencoder(device=device, dtype=dtype).load_from_safetensors( | |
tensors_path=hf_hub_download( | |
repo_id="refiners/sd15.realistic_vision.v5_1.autoencoder", | |
filename="model.safetensors", | |
revision="99f089787a6e1a852a0992da1e286a19fcbbaa50", | |
) | |
), | |
device=device, | |
dtype=dtype, | |
) | |
def resize_modulo_8( | |
image: Image.Image, | |
size: int = 768, | |
resample: Image.Resampling | None = None, | |
on_short: bool = True, | |
) -> Image.Image: | |
"""Resize an image respecting the aspect ratio and ensuring the size is a multiple of 8. | |
The `on_short` parameter determines whether the resizing is based on the shortest side. | |
""" | |
assert size % 8 == 0, "Size must be a multiple of 8 because this is the latent compression size." | |
side_size = min(image.size) if on_short else max(image.size) | |
scale = size / (side_size * 8) | |
new_size = (int(image.width * scale) * 8, int(image.height * scale) * 8) | |
return image.resize(new_size, resample=resample or Image.Resampling.LANCZOS) | |
class LightingPreference(str, Enum): | |
LEFT = auto() | |
RIGHT = auto() | |
TOP = auto() | |
BOTTOM = auto() | |
NONE = auto() | |
def get_init_image(self, width: int, height: int, interval: tuple[float, float] = (0.0, 1.0)) -> Image.Image | None: | |
"""Generate an image with a linear gradient based on the lighting preference. | |
In the original code, interval is always (0., 1.) ; we added it as a parameter to make the function more | |
flexible and allow for less contrasted images with a smaller interval. | |
see https://github.com/lllyasviel/IC-Light/blob/7886874/gradio_demo.py#L242 | |
""" | |
start, end = interval | |
match self: | |
case LightingPreference.LEFT: | |
tensor = torch.linspace(end, start, width).repeat(1, 1, height, 1) | |
case LightingPreference.RIGHT: | |
tensor = torch.linspace(start, end, width).repeat(1, 1, height, 1) | |
case LightingPreference.TOP: | |
tensor = torch.linspace(end, start, height).repeat(1, 1, width, 1).transpose(2, 3) | |
case LightingPreference.BOTTOM: | |
tensor = torch.linspace(start, end, height).repeat(1, 1, width, 1).transpose(2, 3) | |
case LightingPreference.NONE: | |
return None | |
return tensor_to_image(tensor).convert("RGB") | |
def from_str(cls, value: str): | |
match value.lower(): | |
case "left": | |
return LightingPreference.LEFT | |
case "right": | |
return LightingPreference.RIGHT | |
case "top": | |
return LightingPreference.TOP | |
case "bottom": | |
return LightingPreference.BOTTOM | |
case "none": | |
return LightingPreference.NONE | |
case _: | |
raise ValueError(f"Invalid lighting preference: {value}") | |