File size: 8,156 Bytes
c2ca15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence, Tuple

import torch
from mmcv.cnn import (ConvModule, build_activation_layer, build_conv_layer,
                      build_norm_layer)
from mmengine.model import BaseModule
from torch import Tensor, nn
from torch.nn import functional as F

from mmdet3d.registry import MODELS
from mmdet3d.utils import ConfigType, OptConfigType, OptMultiConfig


class BasicBlock(BaseModule):

    def __init__(self,
                 inplanes: int,
                 planes: int,
                 stride: int = 1,
                 dilation: int = 1,
                 downsample: Optional[nn.Module] = None,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(type='BN'),
                 act_cfg: ConfigType = dict(type='LeakyReLU'),
                 init_cfg: OptMultiConfig = None) -> None:
        super(BasicBlock, self).__init__(init_cfg)

        self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)

        self.conv1 = build_conv_layer(
            conv_cfg,
            inplanes,
            planes,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg, planes, planes, 3, padding=1, bias=False)
        self.add_module(self.norm2_name, norm2)
        self.relu = build_activation_layer(act_cfg)
        self.downsample = downsample

    @property
    def norm1(self) -> nn.Module:
        """nn.Module: normalization layer after the first convolution layer."""
        return getattr(self, self.norm1_name)

    @property
    def norm2(self) -> nn.Module:
        """nn.Module: normalization layer after the second convolution layer.
        """
        return getattr(self, self.norm2_name)

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.norm1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.norm2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)
        return out


@MODELS.register_module()
class CENet(BaseModule):

    def __init__(self,
                 in_channels: int = 5,
                 stem_channels: int = 128,
                 num_stages: int = 4,
                 stage_blocks: Sequence[int] = (3, 4, 6, 3),
                 out_channels: Sequence[int] = (128, 128, 128, 128),
                 strides: Sequence[int] = (1, 2, 2, 2),
                 dilations: Sequence[int] = (1, 1, 1, 1),
                 fuse_channels: Sequence[int] = (256, 128),
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(type='BN'),
                 act_cfg: ConfigType = dict(type='LeakyReLU'),
                 init_cfg=None) -> None:
        super(CENet, self).__init__(init_cfg)

        assert len(stage_blocks) == len(out_channels) == len(strides) == len(
            dilations) == num_stages, \
            'The length of stage_blocks, out_channels, strides and ' \
            'dilations should be equal to num_stages'
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self._make_stem_layer(in_channels, stem_channels)

        inplanes = stem_channels
        self.res_layers = []
        for i, num_blocks in enumerate(stage_blocks):
            stride = strides[i]
            dilation = dilations[i]
            planes = out_channels[i]
            res_layer = self.make_res_layer(
                inplanes=inplanes,
                planes=planes,
                num_blocks=num_blocks,
                stride=stride,
                dilation=dilation,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg)
            inplanes = planes
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        in_channels = stem_channels + sum(out_channels)
        self.fuse_layers = []
        for i, fuse_channel in enumerate(fuse_channels):
            fuse_layer = ConvModule(
                in_channels,
                fuse_channel,
                kernel_size=3,
                padding=1,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg)
            in_channels = fuse_channel
            layer_name = f'fuse_layer{i + 1}'
            self.add_module(layer_name, fuse_layer)
            self.fuse_layers.append(layer_name)

    def _make_stem_layer(self, in_channels: int, out_channels: int) -> None:
        self.stem = nn.Sequential(
            build_conv_layer(
                self.conv_cfg,
                in_channels,
                out_channels // 2,
                kernel_size=3,
                padding=1,
                bias=False),
            build_norm_layer(self.norm_cfg, out_channels // 2)[1],
            build_activation_layer(self.act_cfg),
            build_conv_layer(
                self.conv_cfg,
                out_channels // 2,
                out_channels,
                kernel_size=3,
                padding=1,
                bias=False),
            build_norm_layer(self.norm_cfg, out_channels)[1],
            build_activation_layer(self.act_cfg),
            build_conv_layer(
                self.conv_cfg,
                out_channels,
                out_channels,
                kernel_size=3,
                padding=1,
                bias=False),
            build_norm_layer(self.norm_cfg, out_channels)[1],
            build_activation_layer(self.act_cfg))

    def make_res_layer(
        self,
        inplanes: int,
        planes: int,
        num_blocks: int,
        stride: int,
        dilation: int,
        conv_cfg: OptConfigType = None,
        norm_cfg: ConfigType = dict(type='BN'),
        act_cfg: ConfigType = dict(type='LeakyReLU')
    ) -> nn.Sequential:
        downsample = None
        if stride != 1 or inplanes != planes:
            downsample = nn.Sequential(
                build_conv_layer(
                    conv_cfg,
                    inplanes,
                    planes,
                    kernel_size=1,
                    stride=stride,
                    bias=False),
                build_norm_layer(norm_cfg, planes)[1])

        layers = []
        layers.append(
            BasicBlock(
                inplanes=inplanes,
                planes=planes,
                stride=stride,
                dilation=dilation,
                downsample=downsample,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg))
        inplanes = planes
        for _ in range(1, num_blocks):
            layers.append(
                BasicBlock(
                    inplanes=inplanes,
                    planes=planes,
                    stride=1,
                    dilation=dilation,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg))
        return nn.Sequential(*layers)

    def forward(self, x: Tensor) -> Tuple[Tensor]:
        x = self.stem(x)
        outs = [x]
        for layer_name in self.res_layers:
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            outs.append(x)

        # TODO: move the following operation into neck.
        for i in range(len(outs)):
            if outs[i].shape != outs[0].shape:
                outs[i] = F.interpolate(
                    outs[i],
                    size=outs[0].size()[2:],
                    mode='bilinear',
                    align_corners=True)

        outs[0] = torch.cat(outs, dim=1)

        for layer_name in self.fuse_layers:
            fuse_layer = getattr(self, layer_name)
            outs[0] = fuse_layer(outs[0])
        return tuple(outs)