File size: 2,253 Bytes
c2ca15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
_base_ = ['./cenet-64x512_4xb4_semantickitti.py']

backend_args = None
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=False,
        with_label_3d=False,
        with_seg_3d=True,
        seg_3d_dtype='np.int32',
        seg_offset=2**16,
        dataset_type='semantickitti',
        backend_args=backend_args),
    dict(type='PointSegClassMapping'),
    dict(type='PointSample', num_points=0.9),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
        flip_ratio_bev_vertical=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-3.1415929, 3.1415929],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0.1, 0.1, 0.1],
    ),
    dict(
        type='SemkittiRangeView',
        H=64,
        W=1024,
        fov_up=3.0,
        fov_down=-25.0,
        means=(11.71279, -0.1023471, 0.4952, -1.0545, 0.2877),
        stds=(10.24, 12.295865, 9.4287, 0.8643, 0.1450),
        ignore_index=19),
    dict(type='Pack3DDetInputs', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=False,
        with_label_3d=False,
        with_seg_3d=True,
        seg_3d_dtype='np.int32',
        seg_offset=2**16,
        dataset_type='semantickitti',
        backend_args=backend_args),
    dict(type='PointSegClassMapping'),
    dict(
        type='SemkittiRangeView',
        H=64,
        W=1024,
        fov_up=3.0,
        fov_down=-25.0,
        means=(11.71279, -0.1023471, 0.4952, -1.0545, 0.2877),
        stds=(10.24, 12.295865, 9.4287, 0.8643, 0.1450),
        ignore_index=19),
    dict(
        type='Pack3DDetInputs',
        keys=['img'],
        meta_keys=('proj_x', 'proj_y', 'proj_range', 'unproj_range'))
]

train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader