File size: 5,458 Bytes
c2ca15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# dataset settings
# D3 in the config name means the whole dataset is divided into 3 folds
# We only use one fold for efficient experiments
dataset_type = 'WaymoDataset'
data_root = 'data/waymo/kitti_format/'
class_names = ['Car', 'Pedestrian', 'Cyclist']
input_modality = dict(use_lidar=False, use_camera=True)

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/waymo/kitti_format/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0
# backend_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection3d/',
#          'data/': 's3://openmmlab/datasets/detection3d/'
#      }))
backend_args = None

train_pipeline = [
    dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
    dict(
        type='LoadAnnotations3D',
        with_bbox=True,
        with_label=True,
        with_attr_label=False,
        with_bbox_3d=True,
        with_label_3d=True,
        with_bbox_depth=True),
    # base shape (1248, 832), scale (0.95, 1.05)
    dict(
        type='RandomResize3D',
        scale=(1284, 832),
        ratio_range=(0.95, 1.05),
        keep_ratio=True,
    ),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
        type='Pack3DDetInputs',
        keys=[
            'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d',
            'gt_labels_3d', 'centers_2d', 'depths'
        ]),
]

test_pipeline = [
    dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
    dict(
        type='RandomResize3D',
        scale=(1248, 832),
        ratio_range=(1., 1.),
        keep_ratio=True),
    dict(type='Pack3DDetInputs', keys=['img']),
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
    dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
    dict(
        type='RandomResize3D',
        scale=(1248, 832),
        ratio_range=(1., 1.),
        keep_ratio=True),
    dict(type='Pack3DDetInputs', keys=['img']),
]

metainfo = dict(CLASSES=class_names)

train_dataloader = dict(
    batch_size=3,
    num_workers=3,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='waymo_infos_train.pkl',
        data_prefix=dict(
            pts='training/velodyne',
            CAM_FRONT='training/image_0',
            CAM_FRONT_LEFT='training/image_1',
            CAM_FRONT_RIGHT='training/image_2',
            CAM_SIDE_LEFT='training/image_3',
            CAM_SIDE_RIGHT='training/image_4'),
        pipeline=train_pipeline,
        modality=input_modality,
        test_mode=False,
        metainfo=metainfo,
        # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
        # and box_type_3d='Depth' in sunrgbd and scannet dataset.
        box_type_3d='Camera',
        load_type='fov_image_based',
        # load one frame every three frames
        load_interval=5,
        backend_args=backend_args))

val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(
            pts='training/velodyne',
            CAM_FRONT='training/image_0',
            CAM_FRONT_LEFT='training/image_1',
            CAM_FRONT_RIGHT='training/image_2',
            CAM_SIDE_LEFT='training/image_3',
            CAM_SIDE_RIGHT='training/image_4'),
        ann_file='waymo_infos_val.pkl',
        pipeline=eval_pipeline,
        modality=input_modality,
        test_mode=True,
        metainfo=metainfo,
        # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
        # and box_type_3d='Depth' in sunrgbd and scannet dataset.
        box_type_3d='Camera',
        load_type='fov_image_based',
        backend_args=backend_args))

test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(
            pts='training/velodyne',
            CAM_FRONT='training/image_0',
            CAM_FRONT_LEFT='training/image_1',
            CAM_FRONT_RIGHT='training/image_2',
            CAM_SIDE_LEFT='training/image_3',
            CAM_SIDE_RIGHT='training/image_4'),
        ann_file='waymo_infos_val.pkl',
        pipeline=eval_pipeline,
        modality=input_modality,
        test_mode=True,
        metainfo=metainfo,
        # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
        # and box_type_3d='Depth' in sunrgbd and scannet dataset.
        box_type_3d='Camera',
        load_type='fov_image_based',
        backend_args=backend_args))

val_evaluator = dict(
    type='WaymoMetric',
    ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
    waymo_bin_file='./data/waymo/waymo_format/fov_gt.bin',
    data_root='./data/waymo/waymo_format',
    metric='LET_mAP',
    load_type='fov_image_based',
    backend_args=backend_args)
test_evaluator = val_evaluator